
Journal of Business and Management Studies (JBMS) 

ISSN: 2709-0876 

DOI: 10.32996/jbms 

Journal Homepage: www.al-kindipublisher.com/index.php/jbms 

JBMS 
AL-KINDI CENTER FOR RESEARCH  

AND DEVELOPMENT  

 

Copyright: © 2026 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

    Page | 38  

| RESEARCH ARTICLE 

AI-Driven Resilient Supply Chain Architectures: Machine Learning Frameworks for Risk 

Anticipation, Disruption Mitigation, and Adaptive Decision-Making 
 

Subba Rao Katragadda 

Independent researcher, California, USA 

Corresponding Author: Subba Rao Katragadda, E-mail: subbakatragadda@gmail.com 

 

| ABSTRACT 

Global supply chains face various disruptions related to demand volatility, geopolitical tensions, weather-related disruptions, and 

operational failures, making conventional rule-based and reactive resilience approaches inadequate for addressing these 

disruptions. Recent developments in artificial intelligence (AI) and machine learning (ML) offer promising opportunities for 

transforming supply chain resilience from conventional reactive approaches to proactive, adaptive, and learning-enabled 

decision-making systems. However, the prevailing literature primarily focuses on standalone AI-related activities without 

discussing the architectural aspects of integrating AI for end-to-end supply chain resilience under uncertainty. This study 

proposes a unified resilient supply chain architecture with the incorporation of machine learning technologies in the processes of 

anticipation, mitigation, and adaptive decision-making. The research methodology used in the study is the design science 

research approach, which resulted in the development of a multi-layered framework consisting of the data intelligence layer, the 

risk anticipation layer, the prescriptive decision and mitigation layer, and the adaptive learning feedback layer. The framework 

ensures the integration of various machine learning algorithms with supervised learning, unsupervised learning, and 

reinforcement learning techniques with various categories of supply chain risks. In order to test the theoretical robustness of the 

proposed architecture, a scenario-based evaluation approach is followed, and various disruption scenarios, which cover failures 

from the suppliers, disruptions in the logistics network, and demand disruptions, are analyzed. New evaluation criteria, which are 

classified under the term "resilience-oriented evaluation," are also proposed in the paper, which move beyond the traditional 

evaluation criteria of costs and services. This paper contributes to the literature in the fields of supply chain and operations 

management, as an integrative AI architecture for building resilience is proposed, and the conceptualization of adaptive supply 

chains is advanced, while also providing guidance for managers and policymakers who are interested in leveraging AI as a 

strategic tool for building resilience in an ever-increasingly volatile environment. 
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1. Introduction 

Global supply chains are embedded in an environment that is marked by continuous and systemic disruption. The recent 

disruptions, including the pandemic-induced demand shocks, geopolitical tensions, climate-change-related logistics disruptions, 

insolvencies, and cyber-physical disruptions, have highlighted the systemic issues in the global supply chain. The disruptions are 

no longer episodic or isolated; rather, they have become the new normal. The disruptions are embedded in the supply chain 

environments. In this context, the traditional supply chain risk management practices, which are largely static in nature, relying 

on risk registers, contingency planning, and human decision cycles, have failed to ensure the continued operation of supply 

chains. 
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Traditionally, supply chain resilience has focused on supply chain robustness, achieved via supply chain redundancies, safety 

stock, and dual sourcing. Although these provide a degree of short-term supply chain resilience, they are fundamentally reactive 

and costly, and they cannot dynamically adapt to changing supply chain risk. Moreover, rule-based decision systems also 

struggle to scale across complex supply chains where disruptions spread non-linearly and where early warning signs of 

disruptions often originate from unstructured and heterogeneous data sources. As a result, supply chain disruptions are typically 

only addressed once significant performance degradation has been realized, resulting in longer supply chain recovery periods 

and increased economic loss [1]. 

The recent advancements in artificial intelligence (AI) and machine learning (ML) have provided new opportunities to rethink the 

concept of supply chain resilience as an adaptive and data-driven concept, rather than a static and defensive concept. Machine 

learning methods, such as predictive analytics, anomaly detection, and decision optimization through reinforcement learning, 

can provide the ability to continuously sense risk signals, probabilistically predict disruptions, and dynamically select mitigation 

actions in the face of uncertainty. When compared to traditional decision-support systems, AI-driven methods can leverage past 

disruptions to improve decision-making and respond at speeds that are beyond the reach of traditional human-only 

coordinating mechanisms. In this regard, AI can play the role of a fundamental enabler of future supply chain resilience 

architectures [2]. 

However, despite the potential of the field, the body of existing research on the topic of AI in SCM is still scattered. The earlier 

research has mostly focused on individual applications of AI in SCM, for example, in demand forecasting, inventory optimization, 

supplier risk scoring, or transportation planning. While the contributions of the earlier research are valuable in their own right, 

the question of how a range of AI technologies can be meaningfully integrated into an end-to-end architectural framework for 

resilience management across the entire disruption lifecycle, from early risk anticipation to mitigation execution and learning 

after a disruption, has received little attention. In addition, little attention has been paid to the question of how the resilience 

performance of a supply chain can be adapted via feedback [3]. 

This research intends to fill these gaps by proposing a unified resilient supply chain architecture that leverages AI technologies 

for machine learning. This research follows a design science research approach and proposes a layered architecture that provides 

a systematic mapping of supervised, unsupervised, and reinforcement learning paradigms to different types of supply chain risks. 

This proposed architecture highlights closed-loop learning, human-AI collaboration, and resilience-based performance 

measures, which can help supply chains transform from response-based supply chains to intelligent and adapting supply chains. 

The contributions of the present study can be identified at four different levels. First, the study contributes to the concept of 

resilience in the SC domain. For this purpose, the study has proposed an architecture-level framework for AI. Second, the study 

has proposed a structured mapping between machine learning paradigms and SC risks. This provides a basis for the practical 

application of AI in uncertain environments. Third, the study has proposed a set of metrics for the evaluation of the resilience of 

SC systems. Last, the study has some implications for the practical application of AI systems in SC systems. 

The outline for the rest of this paper is as follows: Section 2 discusses the conceptual foundations and existing body of 

knowledge on supply chain resilience and artificial intelligence. Section 3 discusses the research methodology and development 

of the analytical framework. Section 4 presents the proposed architecture for artificial intelligence-based supply chain resilience. 

Section 5 presents the machine learning framework for adaptive decision-making. Section 6 presents the evaluation criteria for 

supply chain resilience. Section 7 presents the managerial and policy implications. Section 8 presents the limitations and future 

directions for research. 

2. Conceptual Foundations and Related Work 

2.1 Supply Chain Resilience: From Robustness to Adaptive Capability 

Supply chain resilience has been traditionally defined as the capability of the supply chain system to resist, absorb, and recover 

from supply chain disruptions while maintaining acceptable performance levels. Initial supply chain resilience approaches 

emphasized the importance of robustness, as exemplified by structural supply chain resilience mechanisms such as safety stock, 

redundant supply chain capacity, and multiple sourcing. Although such mechanisms are helpful in reducing the susceptibility of 

supply chain systems to certain types of supply chain disruptions, these are by their very nature static, economically inefficient, 

especially in environments characterized by high levels of uncertainty, as well as presupposing certain levels of supply chain risk 

stability, which is becoming increasingly inappropriate given the volatile global business environment [4]. 

Recent views have expanded the definition of resilience from simply robustness to incorporate the attributes of agility and 

flexibility. These views of resilience accept that disruptions spread dynamically throughout complex supply networks, requiring 

timely decision-making across numerous nodes and tiers. However, even these sophisticated views of resilience, which focus on 

response and reconfiguration, have been found to struggle in scaling to increased complexity, adapting to unknown disruptions, 
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and leveraging subtle signals within large volumes of diverse data. This limitation has led to the development of a view of 

resilience that considers it no longer simply a structural attribute but a dynamic and learning-based attribute [5]. 

From this perspective, adaptive resilience refers to a supply chain’s ability to continually sense changes in its environment, 

anticipate emerging risks, and modify its response strategies based on feedback from previously experienced disruption events. 

Achieving such adaptivity requires decision-making systems that can process high-dimensional information, learn complex 

nonlinear relationships, and adapt under uncertain conditions—all beyond the limits of conventional analysis and decision-

making. Such a progression in thinking around supply chain resilience can provide a natural theoretical basis for integrating AI 

and ML into supply chain design [6]. 

2.2 Artificial Intelligence and Machine Learning in Supply Chain Management 

Artificial intelligence and machine learning have increasingly been incorporated as part of supply chain management with the 

aim of improving accuracy in forecasting, efficiency in operations, and decision-making. The literature has been grouped into 

three main categories: predictive, descriptive, and prescriptive. In predictive supply chain management, supervised learning 

algorithms have been utilized for forecasting demand, determining lead times, and assessing reliability. In descriptive supply 

chain management, data analytics has been used for improving supply chain visibility. Prescriptive supply chain management has 

been achieved through optimization and heuristic methods [7]. 

More recently, for example, unsupervised machine learning methods such as clustering and anomaly detection have been used 

for discovering hidden patterns and detecting unusual operational behaviors, and reinforcement learning has been studied for 

sequential decision problems related to inventory control and pricing. These advances demonstrate the promise that machine 

learning may hold for enabling complex supply chain decisions under uncertainty. The great majority of applications remain 

functionally segregated and focused on local optima [8]. 

One of the notable limitations of the current literature is the absence of unifying frameworks that integrate data ingestion, risk 

prediction, decision execution, and learning feedback under a single architectural umbrella. There are many studies that treat AI 

models as autonomous tools that operate within their respective silos of application, such as demand planning or transportation 

management. Consequently, the information that these models generate remains inaccessible within the wider supply chain 

decision environment, thereby limiting the ability to forecast disruption cascades or coordinate mitigation responses. 

Furthermore, only a few studies address the issue of how AI systems should revise their decision logic in response to disruption 

events, which remains a necessary prerequisite for resilience in dynamic environments [9]. 

2.3 Research Gaps and Motivation for an Architectural Perspective 

Yet, despite the increasing number of research works on AI-based SC applications, there are still significant gaps to be 

addressed. First, the emphasis is not put on the anticipation of risks, and most research works focus more on the response to 

disruptions or the optimization of efficiency. Second, the current AI-based SC applications do not support the closed-loop 

learning needed to update the decision policies based on the observed outcomes. Third, the current literature has not offered 

much information regarding the integration of various machine learning approaches, such as supervised learning, unsupervised 

learning, and reinforcement learning, to deal with various types of SC risks in a holistic manner [10][11][12]. 

These gaps, therefore, underscore the need for an architecture-oriented approach that moves beyond individual AI applications 

and pushes forward a more holistic approach to the development of intelligent and resilient supply chains. The architecture, 

therefore, must facilitate continuous data fusion from diverse sources, probabilistic risk predictions, dynamic decision-making, 

and learning. It must also facilitate effective human-AI collaboration through the provision of transparency and interpretability in 

decision-making. 

In addressing these challenges, this study proposes an AI-enabled resilient supply chain architecture that incorporates machine 

learning throughout the entire disruption life cycle. This architecture is built on existing resilience theory, but incorporates 

adaptive learning mechanisms to overcome the limitations of the existing literature, providing the foundation for the next 

generation of supply chain resilience. 

 

 

 

3. Research Methodology 



JBMS 8(3): 38-50 

 

Page | 41  

3.1 Methodological Approach 

In this study, the Design Science Research (DSR) approach is used to develop and evaluate the AI-based resilient SC architecture. 

The use of the Design Science Research approach is justified due to the nature of the problem, which is complex and socio-

technical, and the objective of the research, which is to develop and rationalize new artifacts such as architectures, frameworks, 

and decision models, addressing gaps in existing theory and practice. In the SC resilience problem domain, the use of the Design 

Science Research approach is justified due to its ability to facilitate the translation of theoretical contributions and emerging AI 

technology into decision support, which is adaptable and can accommodate uncertainty. 

The methodological decision is informed by two primary considerations. First, the problem under investigation is inherently 

architectural, requiring the integration of disparate data sources, machine learning, and decision-making at various tiers of the 

supply chain. Second, the availability of empirical data regarding large-scale, disruption-driven SC disruptions is often limited or 

unavailable, making a theory-driven approach to artifact development and validation a viable and acceptable solution in the 

fields of OM and IS. The use of existing resilience theory and machine learning paradigms ensures the proposed framework is 

both theoretically sound and relevant. 

3.2 Research Design and Framework Development 

The research design follows a structured, multi-stage process consistent with established design science guidelines. 

Stage 1: Problem Identification and Risk Characterization 

This first step involves the identification of the limitations associated with traditional methods of supply chain resilience through 

the integration of existing literature. Supply chain risks are broadly categorized as demand-side risks, supply-side risks, 

operational risks, and systemic risks. This provides the basis upon which various types of risks are mapped to various machine 

learning techniques. 

Stage 2: Mapping of Machine Learning Capabilities 

In this step, the machine learning paradigms are mapped to the identified risk category types based on the strengths of the 

analysis. Supervised learning methods are mapped to predictive analysis, including demand volatility estimation and supplier 

performance forecasting. Unsupervised learning methods are mapped to anomaly detection and the identification of new, 

unknown disruption patterns. Reinforcement learning is mapped as the primary means through which adaptive policy selection 

is carried out. This ensures that the proposed architecture benefits from multiple machine learning capabilities rather than using 

a single analysis method. 
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Fig 1. Supply chain risk categories 

The above fig illustrates the mapping of various categories of supply chain risks (demand risks, supply risks, operating risks, and 

system risks) with various paradigms of machine learning. Here, supervised learning is used for forecasting and predicting 

supplier performance. Unsupervised learning is used for anomaly detection and revealing hidden patterns of supply chain 

disruptions. Reinforcement learning is used for deriving response strategies. All these results in various forms of supply chain risk 

analytics. 

Stage 3: Architectural Synthesis. 

In the third stage, the data, analytics, and decision components are synthesized within a layered, AI-enabled, resilient SC 

architecture. This architecture is designed to support the continuous ingestion of data, probabilistic anticipation of risks, 

mitigation of risks in a dynamic manner, and learning through feedback. Specific focus is given to the closed-loop learning 

processes that can be employed to update decision policies in response to disruption events, which is a key differentiator in 

comparison to traditional decision support systems. 

3.3 Evaluation Strategy 

In consideration of the conceptual orientation of the proposed framework, this research applies scenario-based evaluation as a 

method for evaluating the theoretical robustness as well as the applicability of the architecture under consideration. Scenario-
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based evaluation is one of the most commonly used methods for evaluating systems, particularly in resilience research, without 

relying on proprietary data sets. The scenarios considered for this research include disruptions related to suppliers, disruptions 

related to the logistics network, disruptions related to customer demand, as well as disruptions related to data integrity. 

In order to support the proposed analysis of the scenario, this research also introduces a set of resilience-oriented evaluation 

criteria, which transcend the traditional criteria of efficiency. The criteria proposed are time to recovery, speed of adaptation, 

decision latency, and learning efficiency. The analysis of the system with regard to the proposed criteria helps the research 

provide a basis to compare AI-based resilient systems with traditional, rule-based approaches to managing the supply chain. 

3.4 Methodological Rigor and Validity 

The methodological quality of the present research is ensured via alignment with the principles of established design science 

research, traceability of the research process from problem definition to artifact design, and the explicit justification of the 

underlying modeling assumptions. Despite the fact that the empirical validation of the framework is beyond the present research 

focus, the proposed framework has been developed in a manner that makes it easily implementable in the course of the 

forthcoming empirical research. Therefore, the methodology can be seen as a foundational contribution to the emerging field of 

AI-supported SC resilience. 

4. Proposed AI-Driven Resilient Supply Chain Architecture 

This section proposes a unified AI-based resilient supply chain architecture that can potentially support proactive risk 

anticipation, dynamic disruption mitigation, and adaptive decision-making in the context of uncertainty. Unlike traditional 

decision support systems that operate within their respective silos, this proposed architecture integrates machine learning 

throughout the disruption life cycle via a layered and modular approach. Moreover, this architecture specifically highlights the 

importance of closed-loop learning, system-wide coordination, and human-AI collaboration, which can potentially transform 

supply chains from reactive response systems into intelligent systems that can learn and adapt. 
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Fig 2. AI-driven layered supply chain architecture 

The above figure represents an AI-based layered supply chain model where multi-source data is transformed into risk 

predictions using machine learning models. These predicted risks are further transformed into risk mitigation decisions using 

optimization and reinforcement learning techniques, and managerial personnel are also included during the execution of this 

model to produce desired outcomes, which are further used to retrain the model to achieve adaptive resilience. 

4.1 Architectural Overview 

The proposed architecture includes four layers: (1) the Data Intelligence Layer, (2) the Risk Anticipation Layer, (3) the Decision 

and Disruption Mitigation Layer, and (4) the Adaptive Learning and Feedback Layer. Each layer is designed to perform one 

specific function while continuously interacting with the other layers, thus closing the loop for the decision process. The 

proposed architecture is hierarchical in nature, thus allowing the integration of artificial intelligence without the need for re-

designing the existing organizational systems. 

At the system level, the system design aligns with a sense-predict-decide-act-learn paradigm. Data streams are continuously 

ingested from internal and external sources and converted into actionable intelligence, which is then processed by predictive 

and prescriptive machine learning models that aid in the formulation of mitigation decisions. The outcome of executed decisions 

is fed back into the system for continuous improvement of resilience performance. 
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4.2 Data Intelligence Layer 

The Data Intelligence Layer is the foundational layer of the architecture because it facilitates end-to-end visibility across the 

supply chain ecosystem. It combines structured data from enterprise systems, including enterprise resource planning systems, 

manufacturing execution systems, and warehouse management systems, with unstructured and semi-structured data from 

communications with suppliers, logistics providers, news feeds, weather services, and geopolitical risk indicators. 

The machine learning models used in this layer of the architecture focus on data fusion, feature extraction, and noise reduction. 

The natural language processing models transform unstructured data into risk signals, while the data preprocessing models 

transform heterogeneous data into a common format for subsequent analytics. The aggregation of heterogeneous data streams 

in the Data Intelligence Layer ensures that weak signals of potential disruption are identified in time for risk anticipation in 

subsequent layers. 

4.3 Risk Anticipation Layer 

The role of the Risk Anticipation Layer is the identification of risks that are emerging in the system, along with the likelihood and 

possible impact of the disrupting event. It uses supervised and unsupervised machine learning for addressing the uncertainty in 

the system. Supervised machine learning models are used for predicting the demand volatility, lead time variability, and supplier 

performance degradation using the historical patterns. Unsupervised machine learning models, on the other hand, are used for 

detecting the anomalous behaviors in the system. The supervised machine learning models provide the predictions for the 

demand volatility, lead time variability, and supplier performance degradation. Unsupervised machine learning models provide 

the predictions for the demand volatility, lead time variability, and supplier performance degradation. It is noteworthy that the 

predictions made in the Risk Anticipation Layer are continuously updated in real time in accordance with the changing patterns 

of the supply chain environment. 

4.4 Decision and Disruption Mitigation Layer 

The Decision and Disruption Mitigation Layer translate the identified risks into actionable response strategies. This layer includes 

prescriptive analytics, optimization techniques, as well as reinforcement learning that enables the assessment of various 

mitigation actions under uncertain situations. The decisions that are made involve various actions like inventory re-allocation, 

supplier switching, production rescheduling, as well as transportation re-routing. 

The reinforcement learning agents play a central role in this layer as they seek adaptive decision policies through interactions 

with the supply chain environment. By analyzing the outcomes of previously executed actions, they seek to strike a balance 

between short-term operational efficiency as well as long-term resilience. The structure also supports decision execution as well 

as human-in-the-loop intervention, allowing decision-makers to override actions with their own knowledge as well as 

considerations. 

4.5 Adaptive Learning and Feedback Layer 

The Adaptive Learning and Feedback Layer distinguishes between resilient AI systems and fixed decision support systems. This 

layer monitors the results of system performance after disruption events have occurred, using this information to retrain the 

predictive models. The system improves its ability to predict future disruptions, determine effective disruption mitigation 

strategies, and minimize the time required for system recovery in the event of future disruptions. 

In addition to retraining the models, the layer also supports the supply chain in terms of explainability and governance through 

the monitoring of model behavior, decision confidence, and system performance. The integration of the learning feedback layer 

enables the supply chain system to become self-improving, allowing the system to respond to new risk profiles and conditions. 

This is crucial in ensuring the system's resilience in the face of uncertainties. 

4.6 Architectural Implications for Resilience 

Collectively, this architecture enables the transition from static resilience approaches to dynamic, intelligence-enabled resilience 

approaches. This architectural perspective enables the rapid sensing, decision-making, and adaptation that can be provided by 

the integration of machine learning across data intelligence, risk anticipation, decision execution, and learning feedback. This 

architectural perspective enables organizations to develop an architecture that is scalable and extensible for the strategic 

implementation of AI as part of their resilience approach, rather than simply as various analytical tools. 
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5. Machine Learning Framework for Adaptive Decision-Making 

In this section, the machine learning framework will be used to define the adaptive decision-making process within the 

developed AI-driven resilient supply chain architecture. The architectural layers will define how AI capabilities are incorporated 

within the supply chain, whereas the framework will define how machine learning processes logically occur, enabling decisions 

that can detect supply chain disruptions and learn from those decisions. The framework will incorporate predictive, prescriptive, 

and feedback learning. 

5.1 Sense–Predict–Decide–Act–Learn Framework Logic 

The proposed framework incorporates a closed sense-predict-decide-act-learn cycle to allow supply chains to dynamically adapt 

their behavior to evolving risk conditions. In the sense phase, data is collected in real-time and near-real-time from both internal 

supply chain operations and external supply chain environments. The data streams are used as input for probabilistic inference 

rather than deterministic rules. 

 

Fig 3. Closed-loop sense–predict–decide–act–learn framework 
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The figure shows a closed-loop sense, predict, decide, act, and learn approach for adaptive supply chain decision-making. In this 

approach, internal and external data are sensed in real time and subsequently analyzed using supervised and unsupervised 

machine learning models to predict potential supply chain disruptions. Prescriptive analytics and reinforcement learning are also 

used to select a decision, with mitigation strategies implemented in operations and subsequently utilized to learn and improve 

supply chain resilience. 

In the predict phase, supervised and unsupervised learning models are used to produce predictions of disruption likelihood, 

severity, and propagation. Unlike traditional predictions, these models produce probabilistic risk distributions rather than point 

estimates. The predictions are used to inform the decision phase, where different mitigation strategies are evaluated. 

The decision phase applies prescriptive analytics and reinforcement learning methods to decide response actions that trade off 

multiple objectives, like cost efficiency, service continuity, and resilience. The actions are executed within the system in the act 

phase. The system performance with regard to the outcomes is monitored. The learn phase updates parameters, risks, and 

decisions with regard to outcomes that have been realized, hence allowing for system improvement through a series of 

disruption events. 

5.2 Adaptive Policy Learning under Uncertainty 

An important aspect of this framework is that it has the potential to facilitate adaptive policy learning in a situation where there 

is incomplete information as well as non-stationary dynamics. In this regard, mechanisms of reinforcement learning are 

leveraged with a purpose to obtain decision policies through interaction with the supply chain system instead of relying on fixed 

optimization policies. In other words, through observing changes in the system’s state as well as reward signals like recovery 

time, stability of service levels, or mitigation costs, the learning agent refines its action selection policy. 

An interesting aspect of this framework is that it has the potential to allow decision agents to exploit their existing effective 

actions as well as explore alternative actions when faced with unprecedented events. In other words, through leveraging a 

balance between these two mechanisms, the decision agents are capable of adapting well to familiar situations as well as 

unprecedented events. In this regard, decision policies converge over time that increase resilience across a range of disruption 

events. 

5.3 From Reactive Response to Adaptive Resilience 

The proposed machine learning framework enables a paradigm shift in the decision-making approach of the supply chain, from 

reactive responses based on set rules to adaptive resilience based on learning. Through a series of disruption cycles, the system 

is able to internalize learning from experience, increase the accuracy of predictions, and increase the efficacy of mitigation. 

Resilience, therefore, is a natural attribute of the system rather than a manually engineered one. The proposed machine learning 

framework, therefore, ensures the tight integration of sensing, predicting, decision-making, and learning, thus enabling the 

supply chain not only to recover from disruptions but also to become more resilient to future disruptions. The proposed machine 

learning approach, therefore, creates the conceptual bridge between AI-enabled analytics and resilient supply chain 

architectures, thus placing machine learning at the center of strategic facilitation of long-term operational sustainability. 

6. Evaluation Metrics for AI-Driven Resilience 

To assess the concept of resilience within AI-enabled SC systems, it is essential to use metrics that are more advanced than 

traditional SC system performance metrics such as cost, fill rates, or service levels. These metrics remain important but do not 

address the system’s ability to foresee disruptions or enhance performance over time. Hence, this research proposes a set of 

metrics for the evaluation of AI-enabled adaptive decision-making architectures for SC systems. 

6.1 Recovery and Survival Metrics 

The two fundamental resilience measures are time-to-recover (TTR) and time-to-survive (TTS). Time-to-recover is the measure of 

the time required to recover to acceptable performance levels after the occurrence of a disruption in the supply chain, while 

time-to-survive is the measure of the time that the supply chain can survive before the performance level is adversely affected. In 

the case of AI, the improvement in time-to-recover and time-to-survive is a measure of the effectiveness of anticipation and 

mitigation decisions taken through the help of machine learning models. 

6.2 Decision Responsiveness and Adaptation Metrics 

The key to AI-enabled resilience is the speed and quality of decision responses to uncertainty. Decision latency is the time 

between the detection of disruptions and the selection of an action to mitigate the disruptions. It is an important measure of the 

speed of decision processes. Adaptation speed refers to the rate at which decision policies respond to changes in risk patterns or 
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conditions. Overall, these metrics are important in assessing the ability of the system to go beyond static decision rules and 

move towards learning. 

6.3 Learning and Improvement Metrics 

A key characteristic of resilient capabilities facilitated by artificial intelligence is the possibility for continuous learning. Learning 

efficiency is used to measure the rate at which system performance is improved with each subsequent disruption event. Such 

improvements in predictive accuracy, mitigation effectiveness, or recovery capabilities are used to measure adaptive intelligence. 

Such measurements are used to distinguish resilient learning systems from traditional decision support systems, where there are 

no improvements in system performance with each subsequent disruption event. 

6.4 System-Level Resilience Assessment 

In order to determine the results of the holistic resilience, the proposed metrics should be evaluated in a collective manner. The 

benchmarking of scenarios can be conducted in order to compare the AI-driven systems with the traditional rule-based systems 

in the presence of the same disrupting factors. Such an evaluation provides a framework for the examination of the trade-offs 

between the efficiency and resilience of the systems, along with the strategic value of the AI systems in the dynamic 

environment. 

7. Managerial and Policy Implications 

The proposed AI-enabled architecture for the resilient supply chain has significant managerial and policy-making implications. 

The reframing of the concept of resilience in terms of adaptability and learning facilitates the transition of 

organizations/institutions from reactive risk management approaches to more proactive approaches of intelligence-based 

decision systems. 

7.1 Managerial Implications 

The findings, therefore, highlight the importance for supply chain leaders to think of AI as a strategic capability for building 

supply chain resilience, as opposed to an analytic tool. The management should focus on investing in technologies that facilitate 

an integrated end-to-end approach, as opposed to developing individual AI projects that are often fragmented. The multi-

layered structure provides a framework that helps organizations adopt AI incrementally without disrupting existing processes. 

The framework also stresses the need for new managerial competencies. This includes the need for cross-functional 

collaboration among supply chain, data science, and risk management teams, as well as governance structures that enable 

human-AI collaboration, including the need for managers to set clear escalation points, clear decision ownership, and 

accountability mechanisms to ensure that AI recommendations align with the organization’s risk appetite and objectives. Within 

this framework, the role of explainable AI is seen as critical for establishing trust in AI decisions, particularly in critical disruption 

scenarios. 

Furthermore, the evaluation metrics used in this research provide the manager with a way of measuring resilience performance 

beyond efficiency-based measures. By monitoring the efficiency of adaptation, decision latency, and learning efficiency, the 

long-term value of AI-based resilience can be quantified and justified. 

7.2 Policy Implications 

From a policy point of view, the proposed system has some implications for various national- and sector-level initiatives that 

seek to improve supply chain resilience. It may be noted that policymakers might use AI-based architectures to improve early 

warning systems, protect critical infrastructure, and develop response strategies. Developing standardized data sharing protocols 

and interoperability systems is vital to support cross-organizational risk anticipation. 

The adaptive qualities of AI-driven decision-making present important issues in terms of governance and ethics. There is a need 

for policymakers to develop rules that promote transparency, accountability, and auditability in AI-driven supply chain decisions, 

particularly in industries that are sensitive to supply chain disruptions, such as healthcare, energy, and food. Additionally, there is 

a need for AI literacy and workforce re-skilling as a means of enabling organizations to effectively engage in intelligent resilience 

systems. 

Consequently, these managerial and policy implications of AI-driven supply chain resilience emphasize the need for a 

coordinated response that combines technological innovation with organizational and regulatory innovation. 
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8. Limitations and Future Research Directions 

Despite the conceptual contributions of the research, there are also limitations associated with the current research that provide 

directions for future research. Firstly, the proposed architecture for the AI-driven resilient supply chain is developed using the 

design science research methodology and conceptual modeling, instead of using empirical validation with large-scale 

operational supply chain data. Although the research methodology is appropriate considering the proprietary nature of 

disruption data, future research can also attempt to validate the proposed framework using large-scale supply chain data. 

Second, the evaluation of the suggested framework is based on scenario-based reasoning, not quantitative simulation or 

optimization tests. Even though scenario-based validation is highly accepted in resilience research, further research can be 

conducted to extend the framework using simulation modeling, digital twin environments, or agent-based modeling to 

quantitatively evaluate the benefits of resilience under different disruption levels. 

Third, the existing framework prioritizes adaptive decision-making in architectural terms without specifying certain algorithmic 

approaches and parameter settings. Future research should consider carrying out comparative studies of different machine 

learning models, for instance, diverse versions of deep reinforcement learning, combined optimization-learning models, and 

graph-based models in terms of their efficiency in promoting resilience in supply chains of different tiers. 

Future research should extend to more organizational and ethical aspects. Future research could extend to examining how trust, 

explainability, and governance factors affect human-AI collaboration for critical supply chain decisions. Other areas for future 

research could include examining data-sharing incentives, cybersecurity concerns, and regulatory factors to improve the 

generalizability of AI-based supply chain resilience architectures. 

The above limitations do not undermine the significance of this research but rather underscore its role as an initial framework to 

open up many avenues for further research on intelligent, adaptive, and resilient supply chain systems. 

9. Conclusion 

Supply chains are now facing persistent uncertainty, where disruptions are not exceptional events but rather persistent 

conditions to be managed. Within this context, traditional risk management and supply chain resilience approaches are 

ineffective in managing supply chain disruptions. To this end, this paper aims to address these challenges through the 

development of an artificial intelligence-based resilient supply chain architecture, which seeks to reconceptualize supply chain 

resilience as an adaptive and learning-based approach. 

Following a design science research methodology, the present paper develops a layered architecture for data intelligence, 

machine learning-based anticipation of risks, decision support, and learning. By establishing a systematic link between 

supervised, unsupervised, and reinforcement machine learning methods and different classes of supply chain risks, the 

framework enables the anticipation of disruptions, mitigation of risks, and improvement of the system through learning from 

experience. The inclusion of the learning component and the collaboration with humans also differentiates the architecture from 

conventional decision support systems. 

In addition to the theoretical contributions, the present study is significant to the advancement of the measurement of resilience 

by proposing the development of the evaluation metrics, which measure the speed of recovery, the responsiveness of decision-

making, and the efficiency of learning, all of which are significant to the assessment of the efficacy of AI-based adaptive systems. 

Overall, the proposed architecture, the machine learning approach, and the resilience metrics provide a holistic base upon which 

the development of intelligent supply chains can be achieved. 

By developing a framework for conceptualizing artificial intelligence as a strategic enabler for adaptive resilience, as opposed to 

a set of individualistic analytical tools, this research adds to the ongoing discussion surrounding intelligent operations and 

supply chain resilience. The framework developed within this research provides a clear direction for how supply chain 

practitioners and academics can continue toward developing self-learning, anticipatory supply chain strategies that can sustain 

competitive supply chain performance within an environment of ongoing disruption. 
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