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| ABSTRACT

Global supply chains face various disruptions related to demand volatility, geopolitical tensions, weather-related disruptions, and
operational failures, making conventional rule-based and reactive resilience approaches inadequate for addressing these
disruptions. Recent developments in artificial intelligence (Al) and machine learning (ML) offer promising opportunities for
transforming supply chain resilience from conventional reactive approaches to proactive, adaptive, and learning-enabled
decision-making systems. However, the prevailing literature primarily focuses on standalone Al-related activities without
discussing the architectural aspects of integrating Al for end-to-end supply chain resilience under uncertainty. This study
proposes a unified resilient supply chain architecture with the incorporation of machine learning technologies in the processes of
anticipation, mitigation, and adaptive decision-making. The research methodology used in the study is the design science
research approach, which resulted in the development of a multi-layered framework consisting of the data intelligence layer, the
risk anticipation layer, the prescriptive decision and mitigation layer, and the adaptive learning feedback layer. The framework
ensures the integration of various machine learning algorithms with supervised learning, unsupervised learning, and
reinforcement learning techniques with various categories of supply chain risks. In order to test the theoretical robustness of the
proposed architecture, a scenario-based evaluation approach is followed, and various disruption scenarios, which cover failures
from the suppliers, disruptions in the logistics network, and demand disruptions, are analyzed. New evaluation criteria, which are
classified under the term "resilience-oriented evaluation," are also proposed in the paper, which move beyond the traditional
evaluation criteria of costs and services. This paper contributes to the literature in the fields of supply chain and operations
management, as an integrative Al architecture for building resilience is proposed, and the conceptualization of adaptive supply
chains is advanced, while also providing guidance for managers and policymakers who are interested in leveraging Al as a
strategic tool for building resilience in an ever-increasingly volatile environment.
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1. Introduction

Global supply chains are embedded in an environment that is marked by continuous and systemic disruption. The recent
disruptions, including the pandemic-induced demand shocks, geopolitical tensions, climate-change-related logistics disruptions,
insolvencies, and cyber-physical disruptions, have highlighted the systemic issues in the global supply chain. The disruptions are
no longer episodic or isolated; rather, they have become the new normal. The disruptions are embedded in the supply chain
environments. In this context, the traditional supply chain risk management practices, which are largely static in nature, relying
on risk registers, contingency planning, and human decision cycles, have failed to ensure the continued operation of supply
chains.
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Traditionally, supply chain resilience has focused on supply chain robustness, achieved via supply chain redundancies, safety
stock, and dual sourcing. Although these provide a degree of short-term supply chain resilience, they are fundamentally reactive
and costly, and they cannot dynamically adapt to changing supply chain risk. Moreover, rule-based decision systems also
struggle to scale across complex supply chains where disruptions spread non-linearly and where early warning signs of
disruptions often originate from unstructured and heterogeneous data sources. As a result, supply chain disruptions are typically
only addressed once significant performance degradation has been realized, resulting in longer supply chain recovery periods
and increased economic loss [1].

The recent advancements in artificial intelligence (Al) and machine learning (ML) have provided new opportunities to rethink the
concept of supply chain resilience as an adaptive and data-driven concept, rather than a static and defensive concept. Machine
learning methods, such as predictive analytics, anomaly detection, and decision optimization through reinforcement learning,
can provide the ability to continuously sense risk signals, probabilistically predict disruptions, and dynamically select mitigation
actions in the face of uncertainty. When compared to traditional decision-support systems, Al-driven methods can leverage past
disruptions to improve decision-making and respond at speeds that are beyond the reach of traditional human-only
coordinating mechanisms. In this regard, Al can play the role of a fundamental enabler of future supply chain resilience
architectures [2].

However, despite the potential of the field, the body of existing research on the topic of Al in SCM is still scattered. The earlier
research has mostly focused on individual applications of Al in SCM, for example, in demand forecasting, inventory optimization,
supplier risk scoring, or transportation planning. While the contributions of the earlier research are valuable in their own right,
the question of how a range of Al technologies can be meaningfully integrated into an end-to-end architectural framework for
resilience management across the entire disruption lifecycle, from early risk anticipation to mitigation execution and learning
after a disruption, has received little attention. In addition, little attention has been paid to the question of how the resilience
performance of a supply chain can be adapted via feedback [3].

This research intends to fill these gaps by proposing a unified resilient supply chain architecture that leverages Al technologies
for machine learning. This research follows a design science research approach and proposes a layered architecture that provides
a systematic mapping of supervised, unsupervised, and reinforcement learning paradigms to different types of supply chain risks.
This proposed architecture highlights closed-loop learning, human-Al collaboration, and resilience-based performance
measures, which can help supply chains transform from response-based supply chains to intelligent and adapting supply chains.

The contributions of the present study can be identified at four different levels. First, the study contributes to the concept of
resilience in the SC domain. For this purpose, the study has proposed an architecture-level framework for Al. Second, the study
has proposed a structured mapping between machine learning paradigms and SC risks. This provides a basis for the practical
application of Al in uncertain environments. Third, the study has proposed a set of metrics for the evaluation of the resilience of
SC systems. Last, the study has some implications for the practical application of Al systems in SC systems.

The outline for the rest of this paper is as follows: Section 2 discusses the conceptual foundations and existing body of
knowledge on supply chain resilience and artificial intelligence. Section 3 discusses the research methodology and development
of the analytical framework. Section 4 presents the proposed architecture for artificial intelligence-based supply chain resilience.
Section 5 presents the machine learning framework for adaptive decision-making. Section 6 presents the evaluation criteria for
supply chain resilience. Section 7 presents the managerial and policy implications. Section 8 presents the limitations and future
directions for research.

2. Conceptual Foundations and Related Work
2.1 Supply Chain Resilience: From Robustness to Adaptive Capability

Supply chain resilience has been traditionally defined as the capability of the supply chain system to resist, absorb, and recover
from supply chain disruptions while maintaining acceptable performance levels. Initial supply chain resilience approaches
emphasized the importance of robustness, as exemplified by structural supply chain resilience mechanisms such as safety stock,
redundant supply chain capacity, and multiple sourcing. Although such mechanisms are helpful in reducing the susceptibility of
supply chain systems to certain types of supply chain disruptions, these are by their very nature static, economically inefficient,
especially in environments characterized by high levels of uncertainty, as well as presupposing certain levels of supply chain risk
stability, which is becoming increasingly inappropriate given the volatile global business environment [4].

Recent views have expanded the definition of resilience from simply robustness to incorporate the attributes of agility and
flexibility. These views of resilience accept that disruptions spread dynamically throughout complex supply networks, requiring
timely decision-making across numerous nodes and tiers. However, even these sophisticated views of resilience, which focus on
response and reconfiguration, have been found to struggle in scaling to increased complexity, adapting to unknown disruptions,
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and leveraging subtle signals within large volumes of diverse data. This limitation has led to the development of a view of
resilience that considers it no longer simply a structural attribute but a dynamic and learning-based attribute [5].

From this perspective, adaptive resilience refers to a supply chain’s ability to continually sense changes in its environment,
anticipate emerging risks, and modify its response strategies based on feedback from previously experienced disruption events.
Achieving such adaptivity requires decision-making systems that can process high-dimensional information, learn complex
nonlinear relationships, and adapt under uncertain conditions—all beyond the limits of conventional analysis and decision-
making. Such a progression in thinking around supply chain resilience can provide a natural theoretical basis for integrating Al
and ML into supply chain design [6].

2.2 Artificial Intelligence and Machine Learning in Supply Chain Management

Artificial intelligence and machine learning have increasingly been incorporated as part of supply chain management with the
aim of improving accuracy in forecasting, efficiency in operations, and decision-making. The literature has been grouped into
three main categories: predictive, descriptive, and prescriptive. In predictive supply chain management, supervised learning
algorithms have been utilized for forecasting demand, determining lead times, and assessing reliability. In descriptive supply
chain management, data analytics has been used for improving supply chain visibility. Prescriptive supply chain management has
been achieved through optimization and heuristic methods [7].

More recently, for example, unsupervised machine learning methods such as clustering and anomaly detection have been used
for discovering hidden patterns and detecting unusual operational behaviors, and reinforcement learning has been studied for
sequential decision problems related to inventory control and pricing. These advances demonstrate the promise that machine
learning may hold for enabling complex supply chain decisions under uncertainty. The great majority of applications remain
functionally segregated and focused on local optima [8].

One of the notable limitations of the current literature is the absence of unifying frameworks that integrate data ingestion, risk
prediction, decision execution, and learning feedback under a single architectural umbrella. There are many studies that treat Al
models as autonomous tools that operate within their respective silos of application, such as demand planning or transportation
management. Consequently, the information that these models generate remains inaccessible within the wider supply chain
decision environment, thereby limiting the ability to forecast disruption cascades or coordinate mitigation responses.
Furthermore, only a few studies address the issue of how Al systems should revise their decision logic in response to disruption
events, which remains a necessary prerequisite for resilience in dynamic environments [9].

2.3 Research Gaps and Motivation for an Architectural Perspective

Yet, despite the increasing number of research works on Al-based SC applications, there are still significant gaps to be
addressed. First, the emphasis is not put on the anticipation of risks, and most research works focus more on the response to
disruptions or the optimization of efficiency. Second, the current Al-based SC applications do not support the closed-loop
learning needed to update the decision policies based on the observed outcomes. Third, the current literature has not offered
much information regarding the integration of various machine learning approaches, such as supervised learning, unsupervised
learning, and reinforcement learning, to deal with various types of SC risks in a holistic manner [10][11][12].

These gaps, therefore, underscore the need for an architecture-oriented approach that moves beyond individual Al applications
and pushes forward a more holistic approach to the development of intelligent and resilient supply chains. The architecture,
therefore, must facilitate continuous data fusion from diverse sources, probabilistic risk predictions, dynamic decision-making,
and learning. It must also facilitate effective human-Al collaboration through the provision of transparency and interpretability in
decision-making.

In addressing these challenges, this study proposes an Al-enabled resilient supply chain architecture that incorporates machine
learning throughout the entire disruption life cycle. This architecture is built on existing resilience theory, but incorporates
adaptive learning mechanisms to overcome the limitations of the existing literature, providing the foundation for the next
generation of supply chain resilience.

3. Research Methodology
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3.1 Methodological Approach

In this study, the Design Science Research (DSR) approach is used to develop and evaluate the Al-based resilient SC architecture.
The use of the Design Science Research approach is justified due to the nature of the problem, which is complex and socio-
technical, and the objective of the research, which is to develop and rationalize new artifacts such as architectures, frameworks,
and decision models, addressing gaps in existing theory and practice. In the SC resilience problem domain, the use of the Design
Science Research approach is justified due to its ability to facilitate the translation of theoretical contributions and emerging Al
technology into decision support, which is adaptable and can accommodate uncertainty.

The methodological decision is informed by two primary considerations. First, the problem under investigation is inherently
architectural, requiring the integration of disparate data sources, machine learning, and decision-making at various tiers of the
supply chain. Second, the availability of empirical data regarding large-scale, disruption-driven SC disruptions is often limited or
unavailable, making a theory-driven approach to artifact development and validation a viable and acceptable solution in the
fields of OM and IS. The use of existing resilience theory and machine learning paradigms ensures the proposed framework is
both theoretically sound and relevant.

3.2 Research Design and Framework Development
The research design follows a structured, multi-stage process consistent with established design science guidelines.
Stage 1: Problem Identification and Risk Characterization

This first step involves the identification of the limitations associated with traditional methods of supply chain resilience through
the integration of existing literature. Supply chain risks are broadly categorized as demand-side risks, supply-side risks,
operational risks, and systemic risks. This provides the basis upon which various types of risks are mapped to various machine
learning techniques.

Stage 2: Mapping of Machine Learning Capabilities

In this step, the machine learning paradigms are mapped to the identified risk category types based on the strengths of the
analysis. Supervised learning methods are mapped to predictive analysis, including demand volatility estimation and supplier
performance forecasting. Unsupervised learning methods are mapped to anomaly detection and the identification of new,
unknown disruption patterns. Reinforcement learning is mapped as the primary means through which adaptive policy selection
is carried out. This ensures that the proposed architecture benefits from multiple machine learning capabilities rather than using
a single analysis method.

Page | 41



Al-Driven Resilient Supply Chain Architectures: Machine Learning Frameworks for Risk Anticipation, Disruption Mitigation, and
Adaptive Decision-Making

Mapping of Machine Learning Paradigms
to Supply Chain Risk Types
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Fig 1. Supply chain risk categories

The above fig illustrates the mapping of various categories of supply chain risks (demand risks, supply risks, operating risks, and
system risks) with various paradigms of machine learning. Here, supervised learning is used for forecasting and predicting
supplier performance. Unsupervised learning is used for anomaly detection and revealing hidden patterns of supply chain
disruptions. Reinforcement learning is used for deriving response strategies. All these results in various forms of supply chain risk
analytics.

Stage 3: Architectural Synthesis.

In the third stage, the data, analytics, and decision components are synthesized within a layered, Al-enabled, resilient SC
architecture. This architecture is designed to support the continuous ingestion of data, probabilistic anticipation of risks,
mitigation of risks in a dynamic manner, and learning through feedback. Specific focus is given to the closed-loop learning
processes that can be employed to update decision policies in response to disruption events, which is a key differentiator in
comparison to traditional decision support systems.

3.3 Evaluation Strategy

In consideration of the conceptual orientation of the proposed framework, this research applies scenario-based evaluation as a
method for evaluating the theoretical robustness as well as the applicability of the architecture under consideration. Scenario-
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based evaluation is one of the most commonly used methods for evaluating systems, particularly in resilience research, without
relying on proprietary data sets. The scenarios considered for this research include disruptions related to suppliers, disruptions
related to the logistics network, disruptions related to customer demand, as well as disruptions related to data integrity.

In order to support the proposed analysis of the scenario, this research also introduces a set of resilience-oriented evaluation
criteria, which transcend the traditional criteria of efficiency. The criteria proposed are time to recovery, speed of adaptation,
decision latency, and learning efficiency. The analysis of the system with regard to the proposed criteria helps the research
provide a basis to compare Al-based resilient systems with traditional, rule-based approaches to managing the supply chain.

3.4 Methodological Rigor and Validity

The methodological quality of the present research is ensured via alignment with the principles of established design science
research, traceability of the research process from problem definition to artifact design, and the explicit justification of the
underlying modeling assumptions. Despite the fact that the empirical validation of the framework is beyond the present research
focus, the proposed framework has been developed in a manner that makes it easily implementable in the course of the
forthcoming empirical research. Therefore, the methodology can be seen as a foundational contribution to the emerging field of
Al-supported SC resilience.

4. Proposed Al-Driven Resilient Supply Chain Architecture

This section proposes a unified Al-based resilient supply chain architecture that can potentially support proactive risk
anticipation, dynamic disruption mitigation, and adaptive decision-making in the context of uncertainty. Unlike traditional
decision support systems that operate within their respective silos, this proposed architecture integrates machine learning
throughout the disruption life cycle via a layered and modular approach. Moreover, this architecture specifically highlights the
importance of closed-loop learning, system-wide coordination, and human-Al collaboration, which can potentially transform
supply chains from reactive response systems into intelligent systems that can learn and adapt.

Page | 43



Al-Driven Resilient Supply Chain Architectures: Machine Learning Frameworks for Risk Anticipation, Disruption Mitigation, and
Adaptive Decision-Making

Al-Driven Resilient Supply Chain Architecture
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Fig 2. Al-driven layered supply chain architecture

The above figure represents an Al-based layered supply chain model where multi-source data is transformed into risk
predictions using machine learning models. These predicted risks are further transformed into risk mitigation decisions using
optimization and reinforcement learning techniques, and managerial personnel are also included during the execution of this
model to produce desired outcomes, which are further used to retrain the model to achieve adaptive resilience.

4.1 Architectural Overview

The proposed architecture includes four layers: (1) the Data Intelligence Layer, (2) the Risk Anticipation Layer, (3) the Decision
and Disruption Mitigation Layer, and (4) the Adaptive Learning and Feedback Layer. Each layer is designed to perform one
specific function while continuously interacting with the other layers, thus closing the loop for the decision process. The
proposed architecture is hierarchical in nature, thus allowing the integration of artificial intelligence without the need for re-
designing the existing organizational systems.

At the system level, the system design aligns with a sense-predict-decide-act-learn paradigm. Data streams are continuously
ingested from internal and external sources and converted into actionable intelligence, which is then processed by predictive
and prescriptive machine learning models that aid in the formulation of mitigation decisions. The outcome of executed decisions
is fed back into the system for continuous improvement of resilience performance.
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4.2 Data Intelligence Layer

The Data Intelligence Layer is the foundational layer of the architecture because it facilitates end-to-end visibility across the
supply chain ecosystem. It combines structured data from enterprise systems, including enterprise resource planning systems,
manufacturing execution systems, and warehouse management systems, with unstructured and semi-structured data from
communications with suppliers, logistics providers, news feeds, weather services, and geopolitical risk indicators.

The machine learning models used in this layer of the architecture focus on data fusion, feature extraction, and noise reduction.
The natural language processing models transform unstructured data into risk signals, while the data preprocessing models
transform heterogeneous data into a common format for subsequent analytics. The aggregation of heterogeneous data streams
in the Data Intelligence Layer ensures that weak signals of potential disruption are identified in time for risk anticipation in
subsequent layers.

4.3 Risk Anticipation Layer

The role of the Risk Anticipation Layer is the identification of risks that are emerging in the system, along with the likelihood and
possible impact of the disrupting event. It uses supervised and unsupervised machine learning for addressing the uncertainty in
the system. Supervised machine learning models are used for predicting the demand volatility, lead time variability, and supplier
performance degradation using the historical patterns. Unsupervised machine learning models, on the other hand, are used for
detecting the anomalous behaviors in the system. The supervised machine learning models provide the predictions for the
demand volatility, lead time variability, and supplier performance degradation. Unsupervised machine learning models provide
the predictions for the demand volatility, lead time variability, and supplier performance degradation. It is noteworthy that the
predictions made in the Risk Anticipation Layer are continuously updated in real time in accordance with the changing patterns
of the supply chain environment.

4.4 Decision and Disruption Mitigation Layer

The Decision and Disruption Mitigation Layer translate the identified risks into actionable response strategies. This layer includes
prescriptive analytics, optimization techniques, as well as reinforcement learning that enables the assessment of various
mitigation actions under uncertain situations. The decisions that are made involve various actions like inventory re-allocation,
supplier switching, production rescheduling, as well as transportation re-routing.

The reinforcement learning agents play a central role in this layer as they seek adaptive decision policies through interactions
with the supply chain environment. By analyzing the outcomes of previously executed actions, they seek to strike a balance
between short-term operational efficiency as well as long-term resilience. The structure also supports decision execution as well
as human-in-the-loop intervention, allowing decision-makers to override actions with their own knowledge as well as
considerations.

4.5 Adaptive Learning and Feedback Layer

The Adaptive Learning and Feedback Layer distinguishes between resilient Al systems and fixed decision support systems. This
layer monitors the results of system performance after disruption events have occurred, using this information to retrain the
predictive models. The system improves its ability to predict future disruptions, determine effective disruption mitigation
strategies, and minimize the time required for system recovery in the event of future disruptions.

In addition to retraining the models, the layer also supports the supply chain in terms of explainability and governance through
the monitoring of model behavior, decision confidence, and system performance. The integration of the learning feedback layer
enables the supply chain system to become self-improving, allowing the system to respond to new risk profiles and conditions.
This is crucial in ensuring the system's resilience in the face of uncertainties.

4.6 Architectural Implications for Resilience

Collectively, this architecture enables the transition from static resilience approaches to dynamic, intelligence-enabled resilience
approaches. This architectural perspective enables the rapid sensing, decision-making, and adaptation that can be provided by
the integration of machine learning across data intelligence, risk anticipation, decision execution, and learning feedback. This
architectural perspective enables organizations to develop an architecture that is scalable and extensible for the strategic
implementation of Al as part of their resilience approach, rather than simply as various analytical tools.
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5. Machine Learning Framework for Adaptive Decision-Making

In this section, the machine learning framework will be used to define the adaptive decision-making process within the
developed Al-driven resilient supply chain architecture. The architectural layers will define how Al capabilities are incorporated
within the supply chain, whereas the framework will define how machine learning processes logically occur, enabling decisions
that can detect supply chain disruptions and learn from those decisions. The framework will incorporate predictive, prescriptive,

and feedback learning.

5.1 Sense-Predict-Decide-Act-Learn Framework Logic

The proposed framework incorporates a closed sense-predict-decide-act-learn cycle to allow supply chains to dynamically adapt
their behavior to evolving risk conditions. In the sense phase, data is collected in real-time and near-real-time from both internal
supply chain operations and external supply chain environments. The data streams are used as input for probabilistic inference

rather than deterministic rules.

Sense

Real-time internal + external data streams

> Disruption Probability & Severity

Decide

Prescriptive Analytics + Reinforcment Learning

Mitigation execution:
® inventory

@ sourcing

@ routing

® scheduling

¥

Learn

Performance monitoring, reward signals

- model retraining
= Policy update

Fig 3. Closed-loop sense—predict-decide-act-learn framework
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The figure shows a closed-loop sense, predict, decide, act, and learn approach for adaptive supply chain decision-making. In this
approach, internal and external data are sensed in real time and subsequently analyzed using supervised and unsupervised
machine learning models to predict potential supply chain disruptions. Prescriptive analytics and reinforcement learning are also
used to select a decision, with mitigation strategies implemented in operations and subsequently utilized to learn and improve
supply chain resilience.

In the predict phase, supervised and unsupervised learning models are used to produce predictions of disruption likelihood,
severity, and propagation. Unlike traditional predictions, these models produce probabilistic risk distributions rather than point
estimates. The predictions are used to inform the decision phase, where different mitigation strategies are evaluated.

The decision phase applies prescriptive analytics and reinforcement learning methods to decide response actions that trade off
multiple objectives, like cost efficiency, service continuity, and resilience. The actions are executed within the system in the act
phase. The system performance with regard to the outcomes is monitored. The learn phase updates parameters, risks, and
decisions with regard to outcomes that have been realized, hence allowing for system improvement through a series of
disruption events.

5.2 Adaptive Policy Learning under Uncertainty

An important aspect of this framework is that it has the potential to facilitate adaptive policy learning in a situation where there
is incomplete information as well as non-stationary dynamics. In this regard, mechanisms of reinforcement learning are
leveraged with a purpose to obtain decision policies through interaction with the supply chain system instead of relying on fixed
optimization policies. In other words, through observing changes in the system'’s state as well as reward signals like recovery
time, stability of service levels, or mitigation costs, the learning agent refines its action selection policy.

An interesting aspect of this framework is that it has the potential to allow decision agents to exploit their existing effective
actions as well as explore alternative actions when faced with unprecedented events. In other words, through leveraging a
balance between these two mechanisms, the decision agents are capable of adapting well to familiar situations as well as
unprecedented events. In this regard, decision policies converge over time that increase resilience across a range of disruption
events.

5.3 From Reactive Response to Adaptive Resilience

The proposed machine learning framework enables a paradigm shift in the decision-making approach of the supply chain, from
reactive responses based on set rules to adaptive resilience based on learning. Through a series of disruption cycles, the system
is able to internalize learning from experience, increase the accuracy of predictions, and increase the efficacy of mitigation.
Resilience, therefore, is a natural attribute of the system rather than a manually engineered one. The proposed machine learning
framework, therefore, ensures the tight integration of sensing, predicting, decision-making, and learning, thus enabling the
supply chain not only to recover from disruptions but also to become more resilient to future disruptions. The proposed machine
learning approach, therefore, creates the conceptual bridge between Al-enabled analytics and resilient supply chain
architectures, thus placing machine learning at the center of strategic facilitation of long-term operational sustainability.

6. Evaluation Metrics for Al-Driven Resilience

To assess the concept of resilience within Al-enabled SC systems, it is essential to use metrics that are more advanced than
traditional SC system performance metrics such as cost, fill rates, or service levels. These metrics remain important but do not
address the system’s ability to foresee disruptions or enhance performance over time. Hence, this research proposes a set of
metrics for the evaluation of Al-enabled adaptive decision-making architectures for SC systems.

6.1 Recovery and Survival Metrics

The two fundamental resilience measures are time-to-recover (TTR) and time-to-survive (TTS). Time-to-recover is the measure of
the time required to recover to acceptable performance levels after the occurrence of a disruption in the supply chain, while
time-to-survive is the measure of the time that the supply chain can survive before the performance level is adversely affected. In
the case of Al, the improvement in time-to-recover and time-to-survive is a measure of the effectiveness of anticipation and
mitigation decisions taken through the help of machine learning models.

6.2 Decision Responsiveness and Adaptation Metrics

The key to Al-enabled resilience is the speed and quality of decision responses to uncertainty. Decision latency is the time
between the detection of disruptions and the selection of an action to mitigate the disruptions. It is an important measure of the
speed of decision processes. Adaptation speed refers to the rate at which decision policies respond to changes in risk patterns or
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conditions. Overall, these metrics are important in assessing the ability of the system to go beyond static decision rules and
move towards learning.

6.3 Learning and Improvement Metrics

A key characteristic of resilient capabilities facilitated by artificial intelligence is the possibility for continuous learning. Learning
efficiency is used to measure the rate at which system performance is improved with each subsequent disruption event. Such
improvements in predictive accuracy, mitigation effectiveness, or recovery capabilities are used to measure adaptive intelligence.
Such measurements are used to distinguish resilient learning systems from traditional decision support systems, where there are
no improvements in system performance with each subsequent disruption event.

6.4 System-Level Resilience Assessment

In order to determine the results of the holistic resilience, the proposed metrics should be evaluated in a collective manner. The
benchmarking of scenarios can be conducted in order to compare the Al-driven systems with the traditional rule-based systems
in the presence of the same disrupting factors. Such an evaluation provides a framework for the examination of the trade-offs
between the efficiency and resilience of the systems, along with the strategic value of the Al systems in the dynamic
environment.

7. Managerial and Policy Implications

The proposed Al-enabled architecture for the resilient supply chain has significant managerial and policy-making implications.
The reframing of the concept of resilience in terms of adaptability and learning facilitates the transition of
organizations/institutions from reactive risk management approaches to more proactive approaches of intelligence-based
decision systems.

7.1 Managerial Implications

The findings, therefore, highlight the importance for supply chain leaders to think of Al as a strategic capability for building
supply chain resilience, as opposed to an analytic tool. The management should focus on investing in technologies that facilitate
an integrated end-to-end approach, as opposed to developing individual Al projects that are often fragmented. The multi-
layered structure provides a framework that helps organizations adopt Al incrementally without disrupting existing processes.

The framework also stresses the need for new managerial competencies. This includes the need for cross-functional
collaboration among supply chain, data science, and risk management teams, as well as governance structures that enable
human-Al collaboration, including the need for managers to set clear escalation points, clear decision ownership, and
accountability mechanisms to ensure that Al recommendations align with the organization’s risk appetite and objectives. Within
this framework, the role of explainable Al is seen as critical for establishing trust in Al decisions, particularly in critical disruption
scenarios.

Furthermore, the evaluation metrics used in this research provide the manager with a way of measuring resilience performance
beyond efficiency-based measures. By monitoring the efficiency of adaptation, decision latency, and learning efficiency, the
long-term value of Al-based resilience can be quantified and justified.

7.2 Policy Implications

From a policy point of view, the proposed system has some implications for various national- and sector-level initiatives that
seek to improve supply chain resilience. It may be noted that policymakers might use Al-based architectures to improve early
warning systems, protect critical infrastructure, and develop response strategies. Developing standardized data sharing protocols
and interoperability systems is vital to support cross-organizational risk anticipation.

The adaptive qualities of Al-driven decision-making present important issues in terms of governance and ethics. There is a need
for policymakers to develop rules that promote transparency, accountability, and auditability in Al-driven supply chain decisions,
particularly in industries that are sensitive to supply chain disruptions, such as healthcare, energy, and food. Additionally, there is
a need for Al literacy and workforce re-skilling as a means of enabling organizations to effectively engage in intelligent resilience
systems.

Consequently, these managerial and policy implications of Al-driven supply chain resilience emphasize the need for a
coordinated response that combines technological innovation with organizational and regulatory innovation.
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8. Limitations and Future Research Directions

Despite the conceptual contributions of the research, there are also limitations associated with the current research that provide
directions for future research. Firstly, the proposed architecture for the Al-driven resilient supply chain is developed using the
design science research methodology and conceptual modeling, instead of using empirical validation with large-scale
operational supply chain data. Although the research methodology is appropriate considering the proprietary nature of
disruption data, future research can also attempt to validate the proposed framework using large-scale supply chain data.

Second, the evaluation of the suggested framework is based on scenario-based reasoning, not quantitative simulation or
optimization tests. Even though scenario-based validation is highly accepted in resilience research, further research can be
conducted to extend the framework using simulation modeling, digital twin environments, or agent-based modeling to
quantitatively evaluate the benefits of resilience under different disruption levels.

Third, the existing framework prioritizes adaptive decision-making in architectural terms without specifying certain algorithmic
approaches and parameter settings. Future research should consider carrying out comparative studies of different machine
learning models, for instance, diverse versions of deep reinforcement learning, combined optimization-learning models, and
graph-based models in terms of their efficiency in promoting resilience in supply chains of different tiers.

Future research should extend to more organizational and ethical aspects. Future research could extend to examining how trust,
explainability, and governance factors affect human-Al collaboration for critical supply chain decisions. Other areas for future
research could include examining data-sharing incentives, cybersecurity concerns, and regulatory factors to improve the
generalizability of Al-based supply chain resilience architectures.

The above limitations do not undermine the significance of this research but rather underscore its role as an initial framework to
open up many avenues for further research on intelligent, adaptive, and resilient supply chain systems.

9. Conclusion

Supply chains are now facing persistent uncertainty, where disruptions are not exceptional events but rather persistent
conditions to be managed. Within this context, traditional risk management and supply chain resilience approaches are
ineffective in managing supply chain disruptions. To this end, this paper aims to address these challenges through the
development of an artificial intelligence-based resilient supply chain architecture, which seeks to reconceptualize supply chain
resilience as an adaptive and learning-based approach.

Following a design science research methodology, the present paper develops a layered architecture for data intelligence,
machine learning-based anticipation of risks, decision support, and learning. By establishing a systematic link between
supervised, unsupervised, and reinforcement machine learning methods and different classes of supply chain risks, the
framework enables the anticipation of disruptions, mitigation of risks, and improvement of the system through learning from
experience. The inclusion of the learning component and the collaboration with humans also differentiates the architecture from
conventional decision support systems.

In addition to the theoretical contributions, the present study is significant to the advancement of the measurement of resilience
by proposing the development of the evaluation metrics, which measure the speed of recovery, the responsiveness of decision-
making, and the efficiency of learning, all of which are significant to the assessment of the efficacy of Al-based adaptive systems.
Overall, the proposed architecture, the machine learning approach, and the resilience metrics provide a holistic base upon which
the development of intelligent supply chains can be achieved.

By developing a framework for conceptualizing artificial intelligence as a strategic enabler for adaptive resilience, as opposed to
a set of individualistic analytical tools, this research adds to the ongoing discussion surrounding intelligent operations and
supply chain resilience. The framework developed within this research provides a clear direction for how supply chain
practitioners and academics can continue toward developing self-learning, anticipatory supply chain strategies that can sustain
competitive supply chain performance within an environment of ongoing disruption.
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