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| ABSTRACT 

Heart disease is one of the leading causes of mortality worldwide, emphasizing the need for early and accurate diagnosis. 

Traditional machine learning (ML) models such as Random Forest (RF) and Support Vector Machines (SVM) have been widely 

used for heart disease classification. However, these models often lack the ability to extract hierarchical patterns and long-range 

dependencies present in complex medical data. To address this limitation, we propose a hybrid deep learning framework that 

integrates XGBoost with Capsule Networks (XGBoost-CapsNet) and Convolutional Neural Networks (CNN) with Transformer 

Encoders (CNN-TE) to enhance classification performance.The study utilizes a structured dataset containing essential heart 

disease indicators. Feature selection is performed using XGBoost, which ranks attributes based on importance. The Capsule 

Network (CapsNet) is then used to preserve spatial relationships and hierarchical dependencies among features. Meanwhile, the 

CNN-TE model extracts spatial features through convolutional layers and captures long-range dependencies using a Transformer 

Encoder with multi-head self-attention mechanisms. The models are trained using optimized hyperparameters and evaluated 

against baseline ML models (Random Forest, SVM, and standalone CNN). Performance metrics such as accuracy, precision, recall, 

F1-score, and AUC-ROC are used for comparison.Experimental evaluations demonstrate that the proposed hybrid models 

significantly outperform traditional approaches. The XGBoost-CapsNet model achieves an accuracy of 98.2%, while CNN-TE 

reaches 97.4%, both surpassing standalone CNN (95.1%), Random Forest (94.2%), and SVM (91.8%). The AUC-ROC scores further 

validate the robustness of the models, with XGBoost-CapsNet scoring 0.99 and CNN-TE achieving 0.98. The use of feature 

selection with XGBoost improves interpretability and computational efficiency, while the hybrid deep learning models enable 

better feature extraction and classification accuracy. 
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Introduction 

Heart disease remains one of the leading causes of mortality worldwide, contributing to approximately 17.9 million deaths annually, 

as reported by the World Health Organization (WHO). Early and accurate diagnosis of heart disease is critical for reducing morbidity 

and mortality rates. Traditional diagnostic methods rely on manual interpretation of electrocardiograms (ECG), echocardiograms, 

and blood test results, which are often time-consuming and prone to human error. With the rapid advancement of artificial 
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intelligence (AI) and deep learning techniques, automated heart disease classification models have emerged as a promising 

solution to improve diagnostic accuracy and efficiency. 

Recent developments in machine learning (ML) and deep learning (DL) have significantly enhanced the performance of predictive 

models in medical diagnosis. Traditional ML models such as Random Forest (RF) and Support Vector Machines (SVM) have been 

widely utilized for heart disease classification due to their ability to handle structured datasets. However, these models often lack 

the capability to extract hierarchical features and capture long-range dependencies, which limits their classification performance. 

On the other hand, deep learning architectures, particularly Convolutional Neural Networks (CNNs), have demonstrated superior 

feature extraction capabilities. However, CNNs alone struggle with learning sequential dependencies among medical attributes, 

reducing their effectiveness for structured health data. 

To address these limitations, this research proposes a hybrid deep learning framework that integrates XGBoost with Capsule 

Networks (XGBoost-CapsNet) and Convolutional Neural Networks with Transformer Encoders (CNN-TE) for improved heart disease 

classification. The XGBoost-CapsNet model leverages XGBoost for feature selection, ranking the most relevant attributes, while 

Capsule Networks preserve spatial relationships among features, ensuring better classification. Similarly, the CNN-TE model 

extracts local spatial features using CNN layers and captures global dependencies using Transformer Encoders, which include 

multi-head self-attention mechanisms for enhanced prediction accuracy. 

Problem Statement 

Machine learning models rely on handcrafted feature engineering, which may not fully capture the complex interactions between 

patient health indicators. Deep learning models such as CNNs, while effective in image-based diagnosis, often fail to retain 

sequential relationships between structured health attributes. This study introduces two novel hybrid models that overcome these 

challenges: 

1. XGBoost + Capsule Network (XGBoost-CapsNet) 

○ XGBoost selects the most relevant features, reducing computational complexity. 

○ Capsule Networks learn hierarchical dependencies, preserving spatial relationships in medical data for improved 

classification. 

2. CNN + Transformer Encoder (CNN-TE) 

○ CNN extracts spatial dependencies from structured data, enabling better feature representation. 

○ The Transformer Encoder models global dependencies using multi-head self-attention mechanisms, enhancing 

the model’s ability to capture feature relationships. 

 Related Work: 

Recent years have witnessed a surge in research combining machine learning and deep learning techniques for cardiovascular 

disease prediction and arrhythmia classification. In 2018, a Functional Convolutional Network (FCN) was employed on CUDB and 

MIT-BIH (VFDB) datasets, achieving an accuracy of 99.26% and an F1-score of 98.24%, demonstrating its capacity to detect 

ventricular arrhythmia effectively [1]. A 2D Convolutional Neural Network (CNN) designed for ECG classification on the MIT-BIH 

dataset attained an impressive 99.05% accuracy and 98.70% F1-score, benefiting from spatial feature extraction [2].Bi-directional 

LSTM models also emerged as strong candidates. One study using MIT-BIH data reported 99.39% accuracy and 96.87% F1-score, 

highlighting LSTM’s strength in capturing temporal dependencies [3]. Another Bi-LSTM model achieved 98.51% accuracy and 

98.49% F1-score, affirming its robustness in multi-class arrhythmia classification [4]. Deep Neural Networks (DNNs) were also 

explored, achieving 99.68% accuracy and 99.65% F1-score in arrhythmia detection [5].Multilevel CNN (ML-CNN) frameworks 

demonstrated 96.00% accuracy and 96.37% F1-score on MIT-BIH [6]. Meanwhile, wearable-device-based DNNs achieved superior 

results, with 99.80% accuracy and 99.65% F1-score, showcasing the feasibility of deploying DL on edge devices for heart monitoring 

[7]. Hybrid models, such as CNN-LSTM, were tested on the Fantasia and INCARTDB datasets and reported an F1-score of 99.52% 

[8]. Similarly, a 1D CNN achieved a near-perfect 99.99% F1-score in beat classification tasks [9].A study employing logistic 

regression on structured clinical data recorded 85% accuracy and 84.81% F1-score, indicating the relevance of traditional methods 

when applied with proper preprocessing and feature engineering [10]. In 2019, deep learning continued to evolve. A 1D CNN 

enhanced with active learning reached 99.20% accuracy and 97.21% F1-score on MIT-BIH [11], while a General Regression Neural 

Network (GRNN) achieved 97.40% accuracy and 92.14% F1-score [12]. Another DNN applied to arrhythmia prediction yielded 

96.40% accuracy and 91.14% F1-score [13].A powerful LSTM model combining multiple datasets (BIDMC-CHF, MIT-BIH NSR, and 

Fantasia) achieved 99.22% accuracy and 99.47% F1-score, showcasing the effectiveness of sequence modeling [14]. For structured 

medical records, an Artificial Neural Network (ANN) model was used for diagnosis on 835 patients, yielding 84.47% accuracy and 
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85.17% F1-score [15].In parallel, classical ML algorithms remained competitive. A decision tree classifier reached 96.00% across all 

metrics [16], while Naïve Bayes attained 90.00% accuracy and F1-score on the UCI heart disease dataset [17]. Random Forest and 

Gradient Boosted Trees further pushed the envelope with 96.28% and 95.83% accuracy, and F1-scores of 96.68% and 96.13%, 

respectively [18][19]. Finally, a Multilayer Perceptron (MLP) achieved 94.96% accuracy and 95.06% F1-score [20].These prior works 

form the foundation upon which this study builds its hybrid deep learning framework, aiming to surpass these benchmarks by 

integrating XGBoost, Capsule Networks, CNNs, and Transformer Encoders for improved prediction and interpretability. 

Data Description 

The dataset utilized in this study consists of structured medical records containing essential clinical attributes for heart disease 

classification. It includes a total of 1,025 patient records, with 14 key features representing various physiological and diagnostic 

indicators. These features include age, gender, blood pressure, cholesterol level, heart rate, fasting blood sugar, resting 

electrocardiographic results, exercise-induced angina, and ST depression, among others. The dataset is pre-processed to handle 

missing values, normalize numerical attributes, and encode categorical variables. To ensure fair model evaluation, the dataset is 

divided into training, validation, and test sets, following an 80-10-10% split. Feature selection is applied using XGBoost, ranking 

attributes based on importance to improve model efficiency and interpretability. Additionally, Synthetic Minority Over-sampling 

Technique (SMOTE) is employed to address class imbalance, ensuring that underrepresented classes receive adequate training 

data. The structured dataset provides a solid foundation for evaluating the proposed hybrid deep learning models (XGBoost-

CapsNet and CNN-TE) and comparing them against traditional classifiers such as Random Forest, SVM, and standalone CNNs. The 

dataset’s diverse clinical attributes enable robust model training, ensuring high classification accuracy and generalization for real-

world medical applications. 

Proposed Models for Heart Disease Prediction 

This research introduces two hybrid deep learning architectures, XGBoost + Capsule Network (XGBoost-CapsNet) and CNN + 

Transformer Encoder (CNN-TE), designed to improve heart disease classification accuracy by integrating feature selection, deep 

feature extraction, and advanced sequence modeling. These models combine the strengths of machine learning and deep learning, 

ensuring higher classification performance, interpretability, and robustness. Additionally, we compare them against three baseline 

models: Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN) to establish their 

effectiveness in heart disease prediction. 

 

FIG:Proposed Model for Heart Disease Prediction 
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Model 1: XGBoost + Capsule Network (XGBoost-CapsNet) 

The XGBoost-CapsNet model enhances heart disease prediction by combining XGBoost-based feature selection with Capsule 

Networks for hierarchical feature learning. XGBoost, a gradient boosting algorithm, assigns feature importance scores, allowing 

the model to retain the most critical attributes while eliminating redundant ones. The refined dataset is then passed into the 

Capsule Network (CapsNet) for deep feature extraction.The Primary Capsule Layer begins with a Conv1D layer (filters = 64, kernel 

size = 3, activation = ReLU), extracting local feature representations from structured data. Batch Normalization stabilizes 

activations, improving training efficiency. The Digit Capsule Layer employs dynamic routing to ensure that only the most relevant 

features contribute to the classification process, preserving spatial relationships between medical attributes. Unlike conventional 

max-pooling operations in CNNs, CapsNet prevents information loss, making it particularly effective for structured datasets. 

Following feature extraction, the fully connected layers refine the output with 128 neurons (ReLU activation) and a Dropout rate 

of 0.3 to prevent overfitting. Another Dense Layer (64 neurons, ReLU activation, Dropout = 0.2) is applied before the final output 

layer, which consists of a single neuron with sigmoid activation, providing a binary classification output for heart disease detection. 

The model is trained using the Adam optimizer (learning rate = 0.0005) and binary cross-entropy loss, ensuring stable and efficient 

training. This hybrid model achieved the highest classification accuracy (98.2%), proving its effectiveness in heart disease prediction. 

Model 2: CNN + Transformer Encoder (CNN-TE) 

The CNN-TE model combines CNN’s ability to extract local features with Transformer Encoders to capture global dependencies 

among patient attributes. This approach ensures that short-term patterns (captured by CNN) and long-range relationships 

(modeled by Transformers) are utilized for improved classification. 

The CNN Feature Extraction Block consists of two Conv1D layers (64 and 128 filters, kernel size = 3, ReLU activation), followed by 

Batch Normalization to stabilize training. A MaxPooling1D layer (pool size = 2) reduces feature dimensionality while retaining 

essential information.Next, the extracted feature maps are passed into the Transformer Encoder Block, where multi-head self-

attention mechanisms (4 heads, each with dimension 64) help model complex dependencies between attributes. The Feedforward 

Network (FFN) consists of two Dense Layers (256 and 128 neurons, both with ReLU activation), ensuring that the model learns 

hierarchical feature representations. The final classification is performed through fully connected layers (64 neurons → 32 neurons, 

both with ReLU), followed by a Dropout Layer (0.2) to prevent overfitting. The final output layer (1 neuron, Sigmoid activation) 

predicts heart disease probability. Adam optimizer (learning rate = 0.0005) and binary cross-entropy loss are used to optimize the 

model, which achieved 97.4% accuracy, demonstrating its ability to effectively classify heart disease cases. 

Performance Comparison of Models 

The classification performance of Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), CNN 

with BiLSTM (CNN-BiLSTM), and XGBoost with Capsule Networks (XGBoost-CapsNet) is presented in the table below. The XGBoost-

CapsNet model achieves the highest accuracy of 98.2%, while CNN-TE attains 97.4%, outperforming traditional machine learning 

classifiers. 

From the table, it is evident that traditional ML models such as Random Forest and SVM achieve relatively high accuracy, but they 

fail to match the performance of deep learning models. The CNN-based models outperform RF and SVM, demonstrating the 

advantage of deep feature extraction over conventional machine learning. The CNN-BiLSTM hybrid model significantly improves 

classification accuracy, leveraging spatial feature extraction from CNN and sequential learning from BiLSTM. The best performance 

is achieved by the XGBoost-CapsNet model, which effectively combines ensemble feature selection with hierarchical feature 

learning, leading to 98.2% accuracy.Feature selection with XGBoost significantly improves model accuracy, particularly for Random 

Forest and CNN-based models. The XGBoost-CapsNet model benefits the most from feature selection, achieving an increase of 

1.7% in accuracy, which enhances its reliability in real-world applications. 
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Figure : Comparison of Model Accuracy 

 

Figure : Comparison of Accuracy for Models with and without Feature Selection 
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Figure: Error Rate Comparison using MAE and RAE Metrics for Proposed Models 

 

Figure: Kappa Score Variation Across Different PCF Values 

Discussion   

The XGBoost-CapsNet model outperforms all traditional classifiers and standalone deep learning models, proving that combining 

feature selection with hierarchical deep learning architectures leads to superior classification accuracy. The low false negative rate 

(0.01%) indicates that the model is highly reliable for real-world clinical applications, ensuring that most heart disease cases are 

accurately diagnosed. Additionally, feature selection enhances efficiency, enabling the model to focus on the most relevant patient 
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attributes, reducing computation time while maintaining high accuracy.The confusion matrix confirms the model's robustness, 

showing that XGBoost-CapsNet minimizes both false positives and false negatives, making it highly suitable for clinical decision-

making. The CNN-TE model also performs exceptionally well, demonstrating the effectiveness of integrating spatial feature 

extraction with attention-based sequence learning.Compared to Random Forest and SVM, the hybrid models offer better feature 

representation, improved generalization, and higher diagnostic accuracy. The CapsNet architecture enhances feature learning, 

while XGBoost provides efficient feature selection, creating a well-balanced and high-performing classification model. 

Conclusion and Future Work 

This research introduced a hybrid deep learning framework for heart disease prediction, integrating XGBoost for feature selection 

with Capsule Networks (XGBoost-CapsNet) and CNN with Transformer Encoders (CNN-TE) to enhance classification accuracy and 

interpretability. The XGBoost-CapsNet model achieved the highest accuracy of 98.2%, outperforming CNN-TE (97.4%), CNN 

(95.1%), and traditional machine learning models such as Random Forest (94.2%) and SVM (91.8%). The proposed models 

effectively captured spatial, hierarchical, and sequential dependencies in medical data, significantly reducing false negatives, 

making them highly reliable for clinical applications. The confusion matrix analysis confirmed the robustness of the models, 

ensuring minimal misclassifications while maintaining high recall (0.98) and AUC-ROC (0.99). By leveraging feature selection with 

XGBoost, the models improved efficiency and interpretability, enabling better decision-making for healthcare professionals. The 

findings emphasize the importance of integrating tree-based learning with advanced deep learning architectures for superior 

medical diagnostics. Future work will focus on expanding the dataset with real-world clinical data, optimizing model architectures 

for real-time deployment, integrating multi-modal patient records (ECG, imaging, and textual reports), and exploring federated 

learning techniques to enhance privacy-preserving AI solutions for healthcare. These advancements will further enhance the 

applicability, scalability, and trustworthiness of AI-driven heart disease prediction models, paving the way for real-world 

implementation in clinical settings. 
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