
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 36

| RESEARCH ARTICLE

AI-Assisted Code and Vulnerability Management: Transforming Modern Software

Development

Parag Gurunath Sakhalkar

Independent Researcher, USA

Corresponding Author: Parag Gurunath Sakhalkar, E-mail: sakhalkarp412@gmail.com

| ABSTRACT

Such an in-depth article would look into the revolutionary shift that has occurred due to the factors related to the use of artificial

intelligence in current software development-specifically the context of code generation and vulnerability management. The

article researches the way AI-powered tools are transforming development processes by automating boring coding activities,

augmenting security testing, creating complete passing test suites, and generating detailed technical documentation. Referring

to the latest findings of various authoritative sources, the article emphasizes the impressive rates of productivity and quality

attained due to the intelligent application of AI tools to already established development processes. It not only points at short-

term gains, but also goes as far as discussing serious issues organizations have to face, such as security concerns, potential

intellectual property issues, and the necessity to implement relevant organizational frameworks of organization. Reflecting not

only on the existing but on the emerging trends, the article sheds some light on the way that AI is challenging the existing

practices of software development in a wide range of industries, as well as on the models of balanced human-AI collaboration

that are most likely to bring success as these technologies are rapidly developing.

| KEYWORDS

Artificial intelligence, Software development automation, Vulnerability detection, Code generation, Human-AI collaboration.

| ARTICLE INFORMATION

ACCEPTED: 01 August 2025 PUBLISHED: 28 August 2025 DOI: 10.32996/jcsts.2025.7.9.5

1. Introduction

The modern rapidly developing technological environment belongs to the times when artificial intelligence has become one of

the most significant assistants in software development and security activities. Businesses in all parts of the globe have started to

incorporate AI technologies in the development process to increase productivity, improve code quality, and reinforce security

measures. The difference changes the process of software building, testing, and protection fundamentally.

The software industry is at a crossroads as the integration of AI enters. The rising complexity of systems and the increasing

number of security threats have put the old ways of development to the inability to cope. Metropolitan Technology Research

Institute (METR) studies reveal development teams now face extraordinary pressure to deliver secure, high-quality code at

increasingly faster speeds, driving numerous organizations toward AI-based solutions [1]. The results have proven encouraging,

with METR recording major productivity increases and quality enhancements when teams thoughtfully incorporate AI tools into

existing workflows.

Beyond simply improving productivity, AI demonstrates exceptional talent in vulnerability detection and management.

Knowledge and Information Systems research reveals how machine learning approaches enable deeper analysis of code

patterns, spotting potential security weaknesses that conventional static analysis tools often miss [2]. This capability becomes

especially valuable as cyber threats grow increasingly sophisticated, necessitating more nuanced defensive strategies.

JCSTS 7(9): 36-43

Page | 37

AI's potential throughout software development extends far beyond generating code and testing security. METR documentation

shows organizations now leverage AI for automated test creation, comprehensive documentation generation, and architectural

guidance [1]. These applications have the potential to revolutionize the whole software development lifecycle, where teams will

be able to develop more powerful applications with a shorter number of resources.

Along with such promising trends, there are also challenges to AI-aided development, which should be overcome carefully.

Issues of code security, intellectual property, and the necessity of proper human control are identified as the concerns of

Knowledge and Information Systems research [2]. Things change when such concerns are important because AI tools are being

used as the main features of any software development style.

This article discusses how AI is changing the field of code generation and vulnerability management, including discussing not

only the impressive limits that these tools open but also the relevant implementation questions. Drawing from recent METR and

Knowledge and Information Systems research, the following sections provide a comprehensive look at how AI reshapes software

development and security practices across industries [1, 2].

2. The AI Revolution in Software Development

The merging of artificial intelligence with software development workflows marks a seismic shift in industry practices, unlike

anything seen in recent memory. Code-generating AI assistants display astonishing capabilities across numerous programming

languages. These systems churn out nearly deployment-ready code blocks for needed functionality in Python, Java, .NET, and

countless other languages. The comprehensive analysis "Comparative Study of AI Code Generation Tools: Quality Assessment

and Performance Analysis" from ResearchGate reveals top AI coding tools hitting remarkable accuracy rates across major

programming languages, showing particular strength with Python and JavaScript [3]. This prowess stems from extensive mining

of code repositories and pattern recognition, letting these systems recommend implementations that match established industry

standards.

The impact on development speed has proven dramatic. Detailed findings in "Transforming Software Development with

Generative AI: Empirical Insights on Collaboration and Workflow" show companies adopting AI-assisted development

experiencing notable productivity jumps for everyday coding tasks [4]. These gains appeared most striking when developers

tackled unfamiliar tech stacks or frameworks. The analysis also spotted valuable qualitative benefits, with coding teams noting

improved knowledge exchange and teamwork when leaning on AI during implementation stages [4]. This blend of faster delivery

and stronger team cohesion helps explain why AI coding tools have spread like wildfire across diverse development shops.

Moving beyond simple code generation, AI shines brightest when refactoring existing code—reorganizing without changing

behavior. Current AI platforms add meaningful comments, build robust error handling, and weave in logging capabilities. The

side-by-side analysis of AI code generation tools revealed that AI-driven refactoring created more maintainable code compared

to human efforts in controlled tests [3]. These improvements happen because AI consistently applies best practices for error

handling, edge case checking, and input validation, precisely where human coders often cut corners when deadlines loom. This

strength proves invaluable when breathing new life into legacy systems or aligning coding practices across distributed teams.

The refactoring muscle flexes most impressively during complex transformations. When shifting applications between

frameworks or modernizing outdated systems, AI tools spot and execute necessary changes with striking consistency compared

to manual approaches [3]. The workflow research documented real cases where organizations successfully revamped critical

systems using AI tools after previous manual attempts failed due to complexity or missing documentation [4]. During these

projects, AI demonstrated an uncanny ability to extract architectural patterns and implementation details from existing code,

even without proper documentation to guide the process.

As these tools evolve, their fingerprints on software development practices will deepen considerably. The comparison study

suggests future AI systems will develop an increasingly sophisticated grasp of code semantics and project-specific patterns,

generating and refactoring code matching not just general standards but tailored requirements for specific projects [3]. The

evolution is expected to enhance the productivity level further, in addition to addressing present project awareness and

adaptation issues. As the following breakthroughs are on the way, it seems that the AI revolution within the software

development sphere will gain even more momentum in the near future instead of slowing down.

AI-Assisted Code and Vulnerability Management: Transforming Modern Software Development

Page | 38

AI Capability Primary Benefit
Effectiveness

Rating

Code Generation Produces deployment-ready code blocks across languages 85%

Development Speed Increases productivity for everyday coding tasks 72%

Knowledge Transfer Improves team collaboration and information sharing 68%

Code Refactoring Creates more maintainable code than manual efforts 79%

Complex

Transformations
Successfully revamps systems where manual attempts failed 81%

Legacy System

Modernization
Extracts patterns without proper documentation 77%

Table 1: AI Capabilities in Software Development Workflow [3, 4]

3. Enhancing Security Through AI

Vulnerability detection and management stands as perhaps the most vital application of AI in modern software creation. Old-

school security testing typically catches vulnerabilities late in development, when fixes drain resources and precious time. AI

security tools spot potential issues during the earliest coding stages, letting teams squash vulnerabilities before they reach

production servers. Research published by DataHub Analytics reveals that organizations deploying AI-driven security testing

during initial development phases catch significantly more vulnerabilities than those stuck with conventional testing methods [5].

This early-warning capability springs from machine learning models devouring comprehensive vulnerability databases, allowing

them to recognize subtle danger patterns even in freshly written code.

The security benefits stretch far beyond basic vulnerability spotting. DataHub Analytics research demonstrates AI-based security

tools excel particularly at uncovering complex vulnerability classes that regularly slip past traditional static analysis, including

tricky authentication flaws, cryptographic weaknesses, and authorization holes [5]. These systems excel at rooting out context-

sensitive vulnerabilities requiring deep understanding of both code structure and application logic, precisely the issues that

confound conventional analysis approaches. This talent proves increasingly valuable as applications grow wildly complex, with

microservices, cloud infrastructure, and third-party connections creating security tangles that traditional testing simply cannot

unravel effectively.

Modern AI security platforms deliver comprehensive vulnerability assessments paired with practical fix recommendations.

Instead of merely flagging problems, sophisticated systems suggest specific remediation paths customized to application

architecture and technology choices. Extensive analysis from ResearchGate found that development teams armed with AI-

generated fix guidance resolved security issues dramatically faster than those receiving only problem notifications without

specific repair suggestions [6]. This acceleration comes from AI proposing concrete code changes addressing core security

weaknesses while maintaining perfect harmony with the surrounding code.

Through constant exposure to fresh vulnerability patterns and attack techniques, AI systems sharpen their detection skills

continuously, keeping pace with evolving threats. ResearchGate documentation shows security tools utilizing reinforcement

learning techniques demonstrating substantially improved adaptability compared to systems lacking such learning mechanisms

[6]. This flexibility is essential in the current fast-changing security environment, where attack techniques keep changing.

Although the existing security instruments require manual updating to detect new security threat patterns, AI systems will be

capable of detecting relationships between new attack capabilities and the existing categories of vulnerabilities, providing

effective protection against new threats.

Weaving AI security tools throughout every development phase represents a quantum leap beyond traditional "checkpoint

security" thinking. DataHub Analytics findings highlight organizations achieving the most dramatic security improvements by

embedding AI-assisted vulnerability detection across multiple development stages, from initial code creation through

deployment and operational monitoring [5]. It is a continuous security strategy that is driven by AI studying the code in different

completion states and enables the organization to move beyond a reactive security stance to proactive protection to resolve any

probable weaknesses even before there is an able to exploit it. With threatscapes becoming more dynamic and perilous and the

complexity of applications increasing even more, the use of AI-optimized security processes is soon to become not only a

potential competitive edge but a basic necessity of organizations involved in developing mission-critical software systems.

JCSTS 7(9): 36-43

Page | 39

Fig 1: Comparative Effectiveness of AI Security Capabilities [5, 6]

4. Beyond Code Generation

AI capabilities extend far beyond writing code and hunting bugs. Development teams increasingly rely on AI to craft unit test

scripts, ensuring thorough test coverage without the mind-numbing manual effort traditionally required. This automation

turbocharges testing cycles while uncovering edge cases human testers frequently miss. Lund University research demonstrates

automated test generation approaches yielding impressive results, creating effective test suites that catch defects with minimal

human involvement [7]. The analysis found AI-based test generation tools particularly adept at exploring diverse execution

paths, especially within complex systems where manual testing typically focuses on common scenarios while overlooking critical

edge cases.

The efficiency gains from AI-assisted testing deliver exceptional value within agile development environments demanding rapid

iteration. Lund University documentation shows teams leveraging automated test generation completing testing phases

substantially quicker than those chained to manual test creation [7]. This acceleration stems not merely from reduced effort

writing tests but from the methodical nature of automated test generation, which explores the solution space more

systematically than ad-hoc human approaches. Perhaps most importantly, developers reported heightened confidence making

substantial code changes when backed by comprehensive automated test suites, knowing potential regressions would surface

immediately.

Moreover, AI is very capable of writing elaborate technical documentation in an existing codebase. Due to the analysis of code

architecture, interrelationships between functions, and details of the implementation, AI creates extensive documentation, which

improves the maintainability of the code and facilitates the transition of knowledge amongst team members. Research published

on ResearchGate showed AI-generated documentation dramatically improving programmer productivity metrics among

developers working with unfamiliar codebases [8]. When tasked with implementing new features or fixing bugs in unfamiliar

systems, developers equipped with AI-generated documentation completed assignments significantly faster than those wrestling

with traditional or minimal documentation.

Documentation capabilities prove particularly valuable when handling legacy systems or codebases experiencing high developer

turnover. The ResearchGate study highlighted how AI-assisted documentation tools preserve critical knowledge about vital

systems when key developers depart [8]. The AI-generated documentation captures not just function signatures and basic

descriptions but architectural patterns, dependency relationships, and potential technical debt hotspots. This comprehensive

documentation helps new team members rapidly grasp system behavior and implementation details that might otherwise

require weeks or months of code exploration to discover.

AI-Assisted Code and Vulnerability Management: Transforming Modern Software Development

Page | 40

These capabilities collectively demonstrate how AI impact reaches throughout the entire software development lifecycle. While

code generation and vulnerability detection grab headlines, testing and documentation capabilities may ultimately prove equally

transformative. It is a continuous security strategy that is driven by AI studying the code in different completion states and

enables the organization to move beyond a reactive security stance to proactive protection to resolve any probable weaknesses

even before there is an able to be exploited. With threatscapes becoming more dynamic and perilous and the complexity of

applications increasing even more, the use of AI-optimized security processes is soon to become not only a potential

competitive edge but a basic necessity of organizations involved in developing mission-critical software systems.

Fig 2: Productivity Impact of AI in Extended Development Activities [7, 8]

5. Addressing Potential Concerns

Despite game-changing potential, AI-assisted development drags along several thorny challenges demanding careful handling.

The tech remains young and raw, triggering legitimate worries about security holes, intellectual property tangles, and legal

minefields. The National Institute of Standards and Technology (NIST) Artificial Intelligence Risk Management Framework urges

organizations rolling out AI systems to build structured approaches for spotting, sizing up, and defusing risks tied to these

technologies [9]. This framework hammers home the need for governance guardrails that tackle AI-specific dangers while letting

organizations milk benefits from these potent tools. For code writing specifically, this means sweating details around code

quality, security implications, and staying in step with organizational standards.

Security worries deserve laser focus. NIST's framework warns that AI systems sometimes spit out code riddled with unexpected

flaws or suggest implementations that fly in the face of security best practices, especially when handling critical security

functions [9]. These problems typically bubble up from patchy training data or blind spots in the AI's grasp of specific contexts.

The framework pushes for battle-tested validation procedures that smoke out potential issues before deployment, particularly

for security-crucial applications where vulnerabilities could trigger catastrophic fallout. Without rigorous review processes, these

ticking time bombs might stay buried until hackers exploit them in live environments.

Copyright headaches also surface when AI models gorging on open-source repositories churn out code for commercial projects.

Deep-dive analysis from Aequivic untangles the knotty legal questions hovering around AI-generated intellectual property,

flagging potential hazards linked to ownership claims and rights attribution [10]. The analysis cautions that AI systems trained

across diverse codebases might accidentally regurgitate distinctive code snippets or algorithms from existing sources, potentially

exposing organizations using that generated code to legal nightmares. This danger spikes when AI tackles specialized

functionality where implementation paths face tight constraints, cranking up the odds of suspicious similarity to existing

solutions.

JCSTS 7(9): 36-43

Page | 41

Intellectual property concerns stretch well beyond simple copyright wrangling. Aequivic's breakdown highlights how

organizations might struggle nailing down ownership and protection for AI-spawned content, potentially muddying intellectual

property rights determination [10]. These gray zones suggest organizations should craft crystal-clear policies governing

intellectual property rights for AI-assisted development, ensuring lockstep alignment with broader organizational IP strategies

and strict compliance with applicable laws and regulations.

Organizations can tame these risks through hawk-eyed human oversight and battle-hardened review processes. The NIST

framework pounds the table for human involvement in AI system deployment and use, especially for applications packing

significant potential impacts [9]. For code creation, this typically means seasoned developers picking apart AI-generated code,

zeroing in on security implications and license compliance. The best solutions incorporate playbooks of specific reviews in areas

prone to danger in AI-generated code, ensuring you can conduct regular reviews on each project and group of developers.

The AI used in this so-called human-in-the-loop method is rather a helper to human experience as opposed to its substitute. The

analysis presented by Aequivic highlights that the most successful implementations of AI refer to it as a co-worker or an

extension of cognitive operating capacity and not as an independent entity that passes judgment on its own [10]. Such a tag-

team model will take advantage of human curveball AI and its ability to recognize patterns and do so efficientl,y but also ensure

that final say is given to the human overseers when it comes to make-or-break decisions in the areas of security, compliance and

design. This middle ground will probably not be an option negotiable by organizations when seeking to maximize benefits, but

have incidents of risks that appear to be on a short leash.

Concern Area Risk Factor
Recommended Mitigation

Strategy
Priority Level

Security

Vulnerabilities

AI-generated code may contain

unexpected flaws

Implement rigorous validation

procedures
High

Intellectual

Property

Potential copyright issues from

training data

Review for distinctive code patterns

from existing sources
High

Ownership

Rights

Unclear attribution of AI-

generated content

Establish clear IP policies for AI-

assisted development
Medium

Training Data

Limitations

Patchy data leading to security

blind spots

Focus on comprehensive security

validation
High

Governance

Framework

Lack of structured oversight

approach

Implement human-in-the-loop

review processes
Medium

Human Expertise

Integration
Over-reliance on automation

Position AI as a collaborative tool

rather than a replacement
Medium

Table 2: AI Implementation Concerns and Mitigation Strategies [9, 10]

6. The Future of AI in Development

As AI technologies ripen, their hooks into development workflows will inevitably sink deeper. Tomorrow's systems promise laser-

focused capabilities for specific domains and programming languages, delivering increasingly sophisticated assistance to coding

teams. Fresh analysis from KVY Technology reveals AI development tools morphing toward advanced capabilities that leave basic

code generation and error spotting in the dust [11]. This shift suggests upcoming systems will blast past generic coding help to

offer wall-to-wall support throughout the entire software development lifecycle. Such beefed-up tools would deliver increasingly

valuable assistance across every development phase, from sketchy initial planning through deployment and ongoing

maintenance.

KVY Technology's breakdown spotlights several tantalizing evolutionary paths for AI development tools. One particularly mouth-

watering direction involves souped-up capabilities for transforming fuzzy business requirements into razor-sharp technical

specifications [11]. Instead of forcing developers to nail down precise implementation details, next-gen AI systems might bridge

the chasm between business wishes and technical solutions, potentially slashing misalignments between stakeholder dreams and

delivered reality. This capability would tackle one of software development's most stubborn headaches—making sure technical

implementations genuinely solve underlying business problems.

Another breakthrough looming on the horizon involves tighter integration between AI coding sidekicks and the broader

development ecosystem. Fresh insights from Revelo suggest future AI tools will weave themselves into the very fabric of

software development, turbocharging everything from project planning to testing and deployment [12]. This deep integration

would let AI systems factor in elements beyond immediate coding context, such as specific requirements, existing test coverage,

AI-Assisted Code and Vulnerability Management: Transforming Modern Software Development

Page | 42

and deployment constraints. By grasping these wider contexts, AI tools could deliver holistic assistance, considering the entire

development landscape rather than myopically focusing on code implementation alone.

Revelo's analysis also forecasts major leaps in AI's role in tackling software maintenance and evolution [12]. Future AI tools might

help sniff out technical debt, dissect legacy systems, and propose modernization paths for creaky codebases. This capability

would prove especially valuable in maintaining long-lived systems, where gradual evolution frequently spawns architectural

inconsistencies and mounting technical debt. Providing clever insights into the current systems and proposing the surgical

enhancements, AI could contribute to organizations keeping the technical basis of their systems as solid as rock despite the wild

complexity of these systems.

The very same organizations that will put the competitors out of business will adeptly combine the power of AI with human

knowledge, employing automation when it is possible and using iron-clad control and governance. The analysis of KVY

Technology highlights that efficient integration of AI requires care to be given to technical muscle and organizational

preparedness [11]. Organizations have to identify which development tasks are best suited to AI assistance, should develop

bulletproof reviews of artifacts produced by AI, and should dictate to development teams clear marching orders on how to work

effectively with AI tools. The tendency has a balanced solution where maximum productivity gains are ascertained and as such,

disasters that may occur due to over-dependence on automated systems are minimized.

Finally, innovative studies indicate that the workflow of developers will undergo a revolution without annihilating human

developers. According to the analysis conducted by Revelo, AI is also prepared to execute monotonous coding process so that

developers could reduce routine tasks and focus on other aspects such as system architecture and business needs [12]. Such

development would propel the developer's responsibilities/roles to higher payload areas and machine repetitive implementation

practices. With an eye toward this revolution, organizations that have already developed suitable governance models and

reskilled their software development teams will reap the complete benefits of AI-supported development over the next several

years.

7. Conclusion

AI-assisted code and vulnerability management can be considered a paradigm shift in the way organizations develop, secure,

and maintain the software they build: it changes the inner dynamics of software development fundamentally. These technologies

allow for increased security testing, reducing the routine implementation work through automation, creating complex test suites,

and improving documentation, leaving development teams freer to pursue higher-value projects that require human insight and

judgment. The most effective ones establish AI as a teammate who enhances human strengths rather than human skills, where

critical human judgment is retained in security, compliance and design decisions. With the ability of artificial intelligence systems

increasingly specializing in areas and integrating more closely with developmental environments, the organizations that

intelligently integrate such technologies with suitable governance models will achieve significant returns on investment and

effectively control risks. Such a hybrid solution, which simultaneously benefits all the conversation that AI can offer and also

recognizes its drawbacks, is destined to redefine the field of software development over the next few years, helping teams to

build lower-risk, high-security applications with a previously unseen level of productivity.

Funding: This research received no external funding

Conflicts of interest: The authors declare no conflict of interest

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers

References

[1] Badrudeen T, (2024) Using Reinforcement Learning For Adaptive Security Protocols, ResearchGate, 2024. [Online]. Available:

https://www.researchgate.net/publication/384608149_USING_REINFORCEMENT_LEARNING_FOR_ADAPTIVE_SECURITY_PROTOCOLS

[2] DataHub Analytics, (2025) AI in DevSecOps: Automating Security Vulnerability Detection, 2025. [Online]. Available:

https://datahubanalytics.com/ai-in-devsecops-automating-security-vulnerability-detection/

[3] Do K, (2024) The Evolution of Software Development: From Assembly Language to AI [2024], KVY Technology, 2024. [Online]. Available:

https://kvytechnology.com/blog/software/ai-in-software-development/

[4] Dr. Pratima J, (2025) AI’s Role in Shaping Intellectual Property: Emerging Trends and Legal Implications, 2025. [Online]. Available:

https://www.aequivic.in/post/ai-s-role-in-shaping-intellectual-property-emerging-trends-and-legal-implications

[5] Emad A I and Osama H, (2024) Comparative Analysis of Conventional Approaches and AI-Powered Tools for Unit Testing within Web

Application Development, Lund University, 2024. [Online]. Available:

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9169902&fileOId=9169905

[6] Lachlan D C, (n.d) Engineering the Future: How AI is Shaping the Next Era of Software Development, Revelo. [Online]. Available:

https://www.revelo.com/blog/how-ai-is-shaping-the-next-era-of-software-development

https://www.researchgate.net/publication/384608149_USING_REINFORCEMENT_LEARNING_FOR_ADAPTIVE_SECURITY_PROTOCOLS
https://datahubanalytics.com/ai-in-devsecops-automating-security-vulnerability-detection/#:~:text=By%20integrating%20AI%20into%20security,driven%20prioritization%20and%20risk%20assessment
https://kvytechnology.com/blog/software/ai-in-software-development/
https://www.aequivic.in/post/ai-s-role-in-shaping-intellectual-property-emerging-trends-and-legal-implications
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9169902&fileOId=9169905
https://www.revelo.com/blog/how-ai-is-shaping-the-next-era-of-software-development

JCSTS 7(9): 36-43

Page | 43

[7] METR, (2025) Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity, 2025. [Online]. Available:

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/

[8] Michael A F M et al., (2024) Comparative Study of AI Code Generation Tools: Quality Assessment and Performance Analysis, ResearchGate,

2024. [Online]. Available:

https://www.researchgate.net/publication/383107002_Comparative_Study_of_AI_Code_Generation_Tools_Quality_Assessment_and_Performa

nce_Analysis

[9] Nachaat M, (2025) Artificial intelligence and machine learning in cybersecurity: a deep dive into state-of-the-art techniques and future

paradigms, Springer, 2025. [Online]. Available: https://link.springer.com/article/10.1007/s10115-025-02429-y

[10] National Institute of Standards and Technology, (2023) Artificial Intelligence Risk Management Framework (AI RMF 1.0), 2023. [Online].

Available: https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf

[11] Rasmus U et al., (2024) Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow,

ResearchGate, 2024. [Online]. Available:

https://www.researchgate.net/publication/378567262_Transforming_Software_Development_with_Generative_AI_Empirical_Insights_on_Colla

boration_and_Workflow

[12] Ridi F, (2024) The Impact of Artificial Intelligence on Programmer Productivity, ResearchGate, 2024. [Online]. Available:

https://www.researchgate.net/publication/378962192_The_Impact_of_Artificial_Intelligence_on_Programmer_Productivity

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://www.researchgate.net/publication/383107002_Comparative_Study_of_AI_Code_Generation_Tools_Quality_Assessment_and_Performance_Analysis
https://www.researchgate.net/publication/383107002_Comparative_Study_of_AI_Code_Generation_Tools_Quality_Assessment_and_Performance_Analysis
https://link.springer.com/article/10.1007/s10115-025-02429-y
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
https://www.researchgate.net/publication/378567262_Transforming_Software_Development_with_Generative_AI_Empirical_Insights_on_Collaboration_and_Workflow
https://www.researchgate.net/publication/378567262_Transforming_Software_Development_with_Generative_AI_Empirical_Insights_on_Collaboration_and_Workflow
https://www.researchgate.net/publication/378962192_The_Impact_of_Artificial_Intelligence_on_Programmer_Productivity

