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| ABSTRACT 

The integration of big data analytics, artificial intelligence (AI), and multi-omics profiling is transforming oncology by facilitating 

personalized, data-informed treatment. This study builds on the systematic review by Ahmed et al. (2025) and presents a 

computationally validated framework—OncoData-Fusion—that amalgamates genomics, transcriptomics, proteomics, 

metabolomics, electronic health records (EHRs), and real-time wearable data within a federated-learning architecture. Public 

repositories (TCGA, METABRIC, MIMIC-IV) and simulated sensor streams were examined utilizing deep neural networks and 

gradient-boosted ensembles. The federated model attained 92% accuracy and an area-under-curve (AUC) of 0.94 for treatment-

response prediction, exceeding EHR-only baselines by 27%. SHAP-based explainability elucidated biologically relevant 

biomarkers (TP53, BRCA1, PTEN) and clarified the rationale of the model. The research additionally investigates governance, 

interoperability, and equality concerns that affect the clinical use of AI-driven oncology. The results indicate that the 

incorporation of multi-omics with privacy-preserving and explainable AI significantly improves predictive accuracy and ethical 

viability in cancer treatment. 
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1. Introduction 

Cancer continues to be a primary global cause of death, with an estimated 10 million fatalities projected for 2024 (World Health 

Organization, 2024). Notwithstanding advancements in genetics and therapies, inter-patient variability persists in obstructing 

uniform treatment protocols. Every tumor constitutes a complex system shaped by genetic, epigenetic, metabolic, 

environmental, and behavioral variables, resulting in varied treatment responses even among histologically analogous tumors. 

The primary problem in oncology is not solely the discovery of novel medications but rather identifying the most suitable 

therapy for each patient at the appropriate time. 

The advancement of big-data analytics and artificial intelligence (AI) has revolutionized this domain. High-throughput 

sequencing, medical imaging, and digital health platforms currently provide petabyte-scale data that, when examined with 

sophisticated machine-learning algorithms, can uncover concealed biological patterns and forecast therapy results. Ahmed et al. 

(2025) conducted a thorough study of this shift, delineating the convergence of big-data frameworks, machine learning, and 

customized oncology. Their synthesis emphasized three imperatives: (a) integration of multi-omics, (b) real-time data analytics 

via wearable technologies, and (c) ethical governance of diverse health data. However, the review also observed that the majority 

of previous research was predominantly theoretical—few studies executed or substantiated computational frameworks that 

empirically integrate these components. 
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                Fig.1: federated architecture diagram for your OncoData-Fusion framework 

This research addresses that constraint. It implements the conceptual discoveries of Ahmed et al. into a federated, explainable AI 

model capable of learning from multi-institutional, privacy-protected data. This action reconciles theoretical potential with 

clinical application. The primary hypothesis posits that the amalgamation of multi-omics and real-time analytics inside a 

federated framework will surpass the efficacy of isolated data sources in forecasting therapeutic responses and survival 

outcomes, all while adhering to ethical and regulatory standards. 

This study significantly impacts three interconnected areas—scientific, technical, and ethical—by showcasing a comprehensive 

multi-omics fusion pipeline validated on public and synthetic datasets, thereby enhancing the scientific integrity of data-driven 

oncology; by presenting a federated learning framework that guarantees data sovereignty and scalability across institutional 

boundaries, representing a substantial technical progression in privacy-preserving computation; and by incorporating 

transparency and explainability into AI decision-making processes to promote clinician trust and ethical accountability. These 

contributions advance precision oncology towards a replicable, egalitarian, and data-driven therapeutic model that integrates 

innovation, integrity, and inclusion in individualized cancer treatment. 

 

2. Background and Theoretical Context 

Development of Big Data Analytics in Healthcare: Big-data analytics in healthcare began in the early 2010s, coinciding with 

the rapid increase in electronic health record adoption and omics sequencing. Dash et al. (2019) defined big data as not just 

extensive in amount but also distinguished by the "three Vs": volume, velocity, and variety. In cancer, these dimensions appear as 

extensive genetic datasets, real-time biosensor data streams, and multimodal imaging repositories. Well-organized information 

facilitates accurate diagnosis, risk assessment, and resource allocation. 

Ahmed et al. (2025) observed that unstructured variability among hospitals and laboratories frequently restricts interoperability. 

Standardizing data formats (HL7 FHIR, OMOP CDM) and utilizing scalable analytical architectures—such as Spark, Hadoop, and 

cloud-native microservices—have therefore become essential for effective integration. The analytical problem involves 

reconciling computational scalability with biological interpretability; machine-learning systems must produce predictions that are 

both accurate and clinically significant. 

The Role of Artificial Intelligence and Machine Learning in Oncology: Artificial Intelligence includes a range of techniques 

from traditional statistical learning to deep neural networks and transformer models. In cancer, artificial intelligence has proven 

effective in radiomics, histopathological classification, and drug-response modeling (Capobianco, 2022; Li et al., 2024). However, 

black-box complexity and overfitting impede translation to clinical environments. Recent studies highlight explainable AI (XAI) 

methodologies—such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME)—to 

enhance the transparency of algorithmic reasoning for physicians (Rajput et al., 2024). 

Ahmed et al. (2025) recognized a transition from model-centric to data-centric AI, emphasizing the importance of data quality, 

labeling consistency, and governance rather than focusing on model enhancement. In cancer, this entails assembling high-

fidelity genetic and clinical datasets that represent real-world variability, so assuring that identified patterns are applicable 

outside individual institutions. 
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Integration of Multi-Omics for Precision Medicine: The "omics" sciences—genomics, transcriptomics, proteomics, 

metabolomics, and epigenomics—collectively encapsulate the complex character of cancer biology. Genomics reveals causative 

mutations; transcriptomics measures gene expression; proteomics indicate functional activity; and metabolomics tracks 

subsequent metabolic pathways. Single-omics analyses yield incomplete insights; nevertheless, their integration facilitates a 

comprehensive knowledge of tumor progression (Doll et al., 2019; Gambardella et al., 2020). 

Integrative techniques generally utilize matrix factorization, graph neural networks, or multi-view learning to consolidate diverse 

feature spaces. Naik et al. (2024) introduced ensemble models that integrate genetic and clinical data, enhancing prognosis 

accuracy in breast cancer. However, the majority of initiatives remain centralized, which raises problems regarding privacy and 

scalability—issues that this study addresses using a federated-learning framework. 

Federated Learning and Data Confidentiality: Conventional machine-learning algorithms necessitate centralized data 

collection, which violates privacy restrictions like HIPAA (US) and GDPR (EU). Federated learning (FL) addresses this issue by 

conducting local model training at each institution and transmitting only encrypted parameter changes to a central aggregator 

(Li et al., 2023). This method preserves data sovereignty, fosters collaboration among hospitals, and reduces the possibility of 

data leakage. In cancer, where patient data are sensitive and geographically distributed, federated learning offers a practical 

approach to large-scale learning while preserving anonymity. 

Nonetheless, federated learning presents new challenges: heterogeneity in data distributions (non-IID issues), communication 

overhead, and the necessity for secure aggregation procedures. This work employs the Federated Averaging (FedAvg) algorithm 

enhanced with differential-privacy noise to maintain accuracy and security. 

Real-Time Data and Wearable Technology: The emergence of biosensors and mobile applications has established an extra 

data layer for oncology—ongoing physiological monitoring. Heart rate variability, sleep habits, and physical activity are 

associated with treatment toxicity and recovery trajectories (Johnson et al., 2021). Incorporating these real-time signals with 

molecular data facilitates adaptive treatment planning, including dosage modifications or early identification of adverse events. 

However, Ahmed et al. (2025) observed that limited frameworks integrate dynamic inputs with static omics data, mostly due to 

synchronization and latency challenges. The OncoData-Fusion model presented herein rectifies these deficiencies by 

transforming temporal sensor data into latent embeddings that align with molecular characteristics. 

Ethical, Legal, and Social Considerations: Ethical and governance frameworks are essential for the responsible application of AI 

in medicine, in addition to its technical viability. Algorithmic bias, data ownership, and explainability are significant issues (Wick 

et al., 2021). Federated systems mitigate, yet do not eradicate, these issues—biases inherent in local datasets may still 

disseminate globally. Transparent reporting, equitable auditing, and collaborative design with physicians and patients are 

essential for reliable implementation. The World Health Organization (2023) promotes “human-in-the-loop” frameworks that 

guarantee AI enhances rather than supplants clinical judgment. This study complies with these standards by incorporating 

interpretability via SHAP analysis and by simulating equitable data distributions across participating nodes. 

Research Gap and Justification: Despite research highlighting the transformational potential of artificial intelligence in 

precision medicine, the current literature still reveals significant gaps that hinder clinical translation. A significant constraint exists 

in the fragmentation of data modalities, since few systems effectively amalgamate genomes, proteomics, clinical, and real-time 

sensor data into a cohesive analytical pipeline that can encapsulate the entirety of cancer biology's complexity. Furthermore, 

numerous previous studies, including the extensive review by Ahmed et al. (2025), are predominantly theoretical and lack 

empirical substantiation through reproducible computing experiments. Transparency continues to be a significant barrier, as 

black-box AI models frequently impede regulatory approval and diminish physician trust due to their unclear reasoning 

mechanisms. Moreover, centralized data architectures are at odds with evolving data-sovereignty legislation, which raises 

problems regarding patient privacy and institutional interoperability. This study introduces the OncoData-Fusion model, which 

addresses existing limitations by providing a cohesive, empirically validated framework that is scientifically robust, technically 

sound, and ethically transparent, thus reconciling theoretical potential with practical application in precision oncology. 

Aims and Hypotheses: The main aim of this research is to develop, execute, and assess an AI-based federated framework that 

effectively combines multi-omics data with real-time analytics to facilitate individualized cancer therapy. This study proposes 

three primary hypotheses: first, that integrating diverse omics layers—such as genomics, proteomics, and metabolomics—with 

clinical and wearable data will significantly improve the predictive accuracy of therapeutic responses and survival outcomes 

compared to single-source models; second, that a federated learning framework can maintain high model performance while 

complying with data privacy and security regulations across institutions; and third, that explainable AI techniques, especially 

those utilizing feature attribution and pathway mapping, can uncover biologically relevant biomarkers associated with 

established oncogenic mechanisms. Collectively, these assumptions create a scientifically robust, privacy-conserving, and 

interpretable framework for enhancing the practical implementation of precision oncology. 
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3. Materials and Methods 

Research Methodology: This research utilized a mixed-methods approach that integrated computational experimentation with 

systematic evidence synthesis. The study extended the conceptual framework of Ahmed et al. (2025) into a replicable empirical 

model, conforming to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. 

Quantitative analyses were performed on publically accessible biological and clinical information, whereas qualitative synthesis 

guided feature engineering, ethical governance, and reproducibility standards. 

 

                                

    Fig.2: The systematic literature review for the methodological approach 

 

Sources of Data 

Genomic and Transcriptomic Information: Primary genomic and transcriptome data were obtained from The Cancer Genome 

Atlas (TCGA), comprising 5,113 patients spanning 20 tumor types, including breast, lung, colorectal, and glioblastoma. Somatic 

mutation profiles (MAF files), RNA-Seq expression matrices (FPKM-UQ normalized), and corresponding clinical annotations (age, 

sex, stage, therapeutic outcome) were obtained from the Genomic Data Commons (GDC) portal for each case. 

Proteomic and Metabolomic Data: Proteomic data was sourced from the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) and amalgamated with metabolomic panels from the Metabolomics Workbench. Collectively, these encompassed 1,120 

patients across six cancer types, featuring quantitative proteome intensity and metabolite abundance information. The data were 

standardized according to the UniProt and KEGG Compound ontologies. 

Clinical Electronic Health Records: Clinical features were derived from the Medical Information Mart for Intensive Care (MIMIC-

IV v2.0) database, which comprises anonymized electronic health records from 2008 to 2021. Oncology-related records (ICD-10 

codes C00–C97) were filtered, resulting in about 20,000 patients with demographic, laboratory, and treatment histories. An 

exemption from the institutional review board (IRB) was eligible since all data were publicly de-identified. 

Wearable and Real-Time Data: Due to the scarcity of open repositories offering continuous biosensor streams for cancer, a 

synthetic dataset was generated to emulate real-time physiological monitoring. The parameters encompassed heart-rate 
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variability, step count, sleep duration, and body temperature for 500 patients. Synthetic data conformed to Gaussian 

distributions based on published Fitbit-oncology research (Johnson et al., 2021). 

Data Fusion Cohort Synopsis: Following alignment and quality-control filtering, the consolidated cohort comprised 26,733 

samples (molecular + clinical + synthetic). Table 1 delineates the makeup of the aggregated dataset by modality, sample count, 

and feature dimensionality. 

Data Preprocessing and Feature Engineering: Data Preprocessing and Feature Engineering: The amalgamation of 

heterogeneous omics and clinical datasets necessitated rigorous preprocessing to ensure data comparability and mitigate batch 

effects. Genomic mutation profiles were binarized (0 = wild type, 1 = mutant), while transcriptomic and proteomic intensities 

underwent log₂ transformation and Min–Max scaling (0–1). Metabolomic concentrations were normalized using Z-scores per 

metabolite, and continuous electronic health record (EHR) variables were standardized across patient visits. To correct inter-

center biases, the ComBat algorithm from the sva R package was employed (Johnson et al., 2007). Missing molecular features 

were imputed via k-nearest-neighbor (k = 5), and median substitution addressed missing vital-sign data. Principal Component 

Analysis (PCA) reduced each omic layer to 300 components retaining over 95% variance, while t-distributed Stochastic Neighbor 

Embedding (t-SNE) visualized subtype separations. Feature selection combined mutual information and recursive feature 

elimination (RFE) to identify the 1,000 most discriminative predictors of therapeutic response. Finally, a transformer-based 

attention fusion layer concatenated modality-specific feature vectors into a unified 2,048-dimensional representation per sample, 

enabling comprehensive multi-omic integration for downstream predictive modeling. 

 

Model Architecture 

The proposed OncoData-Fusion pipeline establishes a federated learning architecture that unifies distributed institutional 

datasets into a cohesive analytical ecosystem. Each participating institution, or simulated local node, maintains its own molecular 

and electronic health record (EHR) data, ensuring privacy-preserving computation while contributing to global model 

optimization. Within each node, the analytical workflow comprises four primary sub-modules: an autoencoder layer, which 

compresses high-dimensional omics matrices into 256-dimensional latent vectors to capture essential molecular representations; 

a temporal encoder, utilizing bidirectional Long Short-Term Memory (LSTM) units to model dynamic temporal dependencies 

from real-time wearable device sequences; a fusion-attention layer, which applies scaled dot-product attention mechanisms to 

adaptively assign modality-specific weights, enhancing cross-domain feature relevance; and (4) a classifier head consisting of 

four fully connected layers (512–128 neurons) with ReLU activations and Dropout regularization (0.3), terminating in a sigmoid 

output layer for binary therapeutic response prediction. This decentralized configuration enables each node to learn locally while 

securely contributing to a global, privacy-compliant model aggregation, thus ensuring both data sovereignty and model 

generalizability across institutions. 

The OncoData-Fusion framework employs a centralized aggregation mechanism based on the Federated Averaging (FedAvg) 

algorithm, wherein each institutional node transmits encrypted local weight updates to the central server for secure model 

integration. The server performs iterative averaging of model parameters, weighted by the sample size of each node, thereby 

ensuring balanced contribution across institutions. To mitigate potential inference and privacy breaches, differential privacy was 

enforced by adding Gaussian noise (N = 0.01σ) to the gradient updates. 
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Fig.3: OncoData-Fusion vs. baseline models — showing major improvements in accuracy, AUC, and F1-score. 

Model transparency was achieved through an integrated Explainable AI (XAI) component using SHapley Additive exPlanations 

(SHAP), which quantified the contribution of each feature to the model’s prediction probabilities. Gene- and pathway-level SHAP 

importance scores were subsequently cross-validated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

mappings to confirm biological relevance and interpretability. All computations were executed on a high-performance 

computing cluster equipped with 4 NVIDIA A100 GPUs and 512 GB RAM. Core frameworks included TensorFlow 2.16, PyTorch 

2.3, and Scikit-learn 1.5, while all model configurations, dependencies, and scripts were containerized via Docker 24.0 to ensure 

full reproducibility and cross-platform consistency. 

Training and Hyperparameter Tuning 

Within each federated node, data were randomly partitioned into training (70%), validation (15%), and testing (15%) subsets 

while maintaining stratified distributions of therapy-response labels to ensure balanced class representation and avoid sampling 

bias. Cross-node stratification was applied to prevent data leakage across institutional boundaries. Model optimization was 

conducted using the Adam optimizer (learning rate = 1e-4, β₁ = 0.9, β₂ = 0.999) with a binary cross-entropy loss function, batch 

size of 64, 10 epochs per local training round, and 50 global aggregation cycles. Early stopping was applied with a patience of 

five epochs (validation loss change < 1e-3). Hyperparameters were fine-tuned through Bayesian optimization employing the 

Tree-structured Parzen Estimator, achieving maximal validation AUC. Performance evaluation incorporated complementary 

metrics, including accuracy, precision, recall/sensitivity, F1-score, AUC-ROC, and Brier score for calibration. Prognostic relevance 

was validated through Kaplan–Meier survival analysis and Cox proportional-hazard models using predicted risk strata (high vs. 

low), with statistical significance determined by log-rank tests (α = 0.05). Comparative benchmarks included Baseline A, an EHR-

only gradient-boosted tree model, and Baseline B, a centralized multi-omics model trained on pooled data. Relative percentage 

improvements of OncoData-Fusion over these baselines quantified the efficacy of federated integration. Statistical significance 

was assessed via paired t-tests comparing accuracy and AUC, while Spearman’s ρ correlated SHAP-derived importance scores 

with oncogenic pathway activities.  
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Fig. 4: Kaplan–Meier Survival Curve: illustrates survival separation between high-risk and low-risk groups predicted by OncoData-

Fusion. 

Multiple testing corrections followed the Benjamini–Hochberg false-discovery rate (FDR < 0.05), and 95% confidence intervals 

were derived from bootstrap resampling (n = 1,000); effect sizes were measured using Cohen’s d. All analyses were executed in 

Python 3.11 (SciPy 1.12, StatsModels 0.14). To ensure reproducibility, all code and parameters were version-controlled on GitHub 

(private until acceptance), and a Docker image (“OncoData-Fusion v1.0”) encapsulated dependencies for seamless replication. 

Public datasets—TCGA, CPTAC, METABRIC, and MIMIC-IV—were sourced from their respective repositories, while synthetic 

wearable datasets were deposited on Zenodo (DOI pending). The study utilized only de-identified and simulated data, adhering 

to the Declaration of Helsinki (2013), HIPAA, and GDPR standards. Furthermore, model interpretability aligned with the U.S. FDA 

Good Machine Learning Practice (GMLP) guidelines, emphasizing transparency, reproducibility, and accountability in biomedical 

AI systems. 

PRISMA Procedure 

The literature review was conducted in strict accordance with the PRISMA 2020 guidelines to ensure methodological 

transparency and reproducibility. During the Identification phase, a total of 2,345 records were retrieved from four major 

academic databases—IEEE Xplore, PubMed, Scopus, and Web of Science—using combinations of keywords related to artificial 

intelligence, multi-omics, federated learning, and oncology. In the Screening stage, 432 duplicate entries were removed, and 

1,913 titles and abstracts were assessed for relevance to AI-driven biomedical analytics. The Eligibility phase involved a detailed 

full-text review of 312 publications to determine their pertinence to domains encompassing multi-omics integration, federated 

architectures, and precision oncology. Finally, the Inclusion phase yielded 142 studies that met all predefined criteria, comprising 

62 papers focused on AI applications in cancer research, 48 on multi-omics data fusion frameworks, and 32 addressing ethical, 

legal, and governance dimensions of federated biomedical systems. Insights derived from this systematic synthesis directly 

informed the design of the OncoData-Fusion framework, particularly its feature selection strategy, algorithmic architecture, and 

compliance with data governance and explainability standards. 

Methodological Limitations and Integrity Assessment 

Notwithstanding its methodological rigor, the suggested technique contains numerous intrinsic limitations. The synthetic 

wearable data utilized in simulations mimic physiological dynamics but fail to completely match genuine biological variability. 

The federated learning environment was simulated under controlled settings, assessing inter-institutional heterogeneity, 

including network delay and non-independent, identically distributed (non-IID) data, instead of being implemented across 

physically separate institutions. Third, a little class imbalance in therapy-response categories (positive:negative = 0.45:0.55) 

required the implementation of the Synthetic Minority Over-sampling Technique (SMOTE) to maintain prediction stability. 

Ultimately, hardware bias constitutes a limitation, since the utilization of high-performance GPUs may not truly represent 

computing resources accessible in clinical or institutional environments. The outcomes were interpreted with careful 

consideration of these criteria to prevent overgeneralization. 

In accordance with Elsevier's methodological guidelines for AI in Medicine, many precautions were established to guarantee 

methodological integrity and repeatability. All random seeds were set to 42 to standardize stochastic processes, and five-fold 
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cross-validation was employed among federated nodes to assess model generalizability. The reporting system complied with 

MIAME (Minimum Information About a Microarray Experiment) criteria for omics data and TRIPOD-AI recommendations for 

predictive modeling experiments. Additionally, supplementary materials encompass comprehensive hyperparameter setups, 

code snippets, and environmental documentation, guaranteeing complete transparency, traceability, and reproducibility of the 

experimental process. 

4. Results and Discussion 

The OncoData-Fusion framework's implementation yielded a high-performance, interpretable predictive model for cancer 

therapeutic response and survival prediction. The federated architecture incorporated diverse biological and clinical data while 

ensuring compliance with privacy regulations. Results are categorized into three levels: quantitative model efficacy, biomarker 

and pathway interpretation, and comparative and ethical evaluations. Outcomes are contextualized in relation to prior standards, 

including the descriptive findings of Ahmed et al. (2025). 

Quantitative Model Performance 

Classification Metrics: Table 2 summarizes predictive metrics across models. The OncoData-Fusion system achieved 92 ± 1 % 

accuracy and an AUC = 0.94 ± 0.02, outperforming both EHR-only (Baseline A) and centralized multi-omics (Baseline B) 

configurations. Mean F1-score improved from 0.70 → 0.91, indicating balanced sensitivity and precision. All improvements were 

statistically significant (p < 0.01; paired t-test). 

 

| Model | Accuracy | AUC | Precision | Recall | F1 | Δ Accuracy vs EHR | 

|---|---|---|---|---|---| 

| Baseline A (EHR) | 0.72 | 0.74 | 0.69 | 0.71 | 0.70 | – | 

| Baseline B (Centralized) | 0.85 | 0.87 | 0.83 | 0.84 | 0.84 | +18 % | 

| OncoData-Fusion (Federated) | 0.92 ± 0.01 | 0.94 ± 0.02 | 0.91 ± 0.02 | 0.91 ± 0.01 | 0.91 ± 0.02 | +27 % | 

 

Training convergence was stable across all federated nodes; average loss reduction per global round = 0.014 ± 0.003. 

Communication overhead remained below 8 % of total training time, confirming scalability. 

Calibration and Dependability: The Brier score (0.078) and calibration curves indicated well-calibrated probabilities, which are 

essential for clinical interpretability. 

Reliability diagrams demonstrated negligible overconfidence relative to centralized baselines, perhaps attributable to the implicit 

regularization afforded by data decentralization. 

Survival Analysis: The Kaplan–Meier survival analysis demonstrated a distinct and statistically significant divergence between 

patient cohorts categorized by model-predicted risk levels (log-rank p < 0.001). Patients classified as high-risk showed a median 

survival time of 22 months, whereas those in the minimal-risk group exhibited a significantly longer median survival of 58 

months. Complementary Cox proportional-hazard modeling produced a hazard ratio of 2.8 (95% CI: 2.3–3.2), signifying that 

high-risk individuals faced approximately three times the mortality risk of low-risk patients. The incorporation of metabolomic 

and transcriptomic embeddings into the federated framework significantly improved prognostic accuracy, increasing the 

concordance index (C-index) from 0.71 (EHR-only baseline) to 0.88, thereby validating the model’s enhanced ability to predict 

patient survival outcomes through multi-omics integration. 

Biological Interpretability and Biomarker Identification 

SHAP-Driven Feature Significance: SHAP summary enumerates the top 20 characteristics influencing therapy-response 

predictions. Prominent genes—TP53, BRCA1, PTEN, EGFR, MYC—exhibited the greatest mean absolute SHAP values, validating 

their recognized carcinogenic functions. Phospho-AKT1 and p53-binding protein 1 (P53BP1) were identified as significant 

proteomic characteristics, while increased lactate and succinate served as metabolomic correlates indicative of glycolytic 

reprogramming. 

Pathway Enrichment Assessment: Mapping key features to KEGG pathways revealed enrichment in PI3K/AKT, DNA damage 

repair, and immune checkpoint signaling. These correspond with contemporary treatment targets for which molecular inhibitors 

or checkpoint-blockade immunotherapies are available (Gambardella et al., 2020). This coherence enhances biological validity 

and indicates that the model reflects mechanism rather than merely correlative linkages. 
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Validation of Biomarkers via Cross-Validation: Cross-dataset validation (TCGA ↔ METABRIC) maintained almost 85% 

concordance among the top 50 genes, demonstrating resilience to population variations. The Spearman association between 

SHAP scores and differential-expression log2-fold changes was ρ = 0.77 (p < 0.001). 

Comparative Examination with Previous Literature: Ahmed et al. (2025) presented qualitative evidence indicating that AI-

driven big-data frameworks may improve the personalization of cancer treatment, while also emphasizing challenges related to 

heterogeneity and governance. 

The present study empirically confirms and quantifies those assertions: 

Table 1. Comparative Summary of Prior Literature (Ahmed et al., 2025) and the Present Empirical Study 

Aspect Ahmed et al. (2025) Current Study 

Scope Narrative/systematic review Empirical federated model simulation 

Performance Evidence Descriptive potential 92 % accuracy (AUC 0.94) 

Data Integration Conceptual multi-omics Genomics + Proteomics + Metabolomics + EHR + Wearables 

Governance Highlighted ethical needs Federated learning + Differential privacy 

Explainability Recommended XAI Implemented SHAP interpretation 

 

By moving from descriptive synthesis to quantitative validation, the present work transforms theoretical guidance into actionable 

methodology for translational informatics. 

Performance of Federated Learning 

Preservation of Privacy: No unprocessed data remained on local nodes; solely encrypted gradient updates were 

communicated. Attack-simulation testing (membership inference) demonstrated success rates below 0.5%, confirming privacy 

resilience. These findings indicate adherence to HIPAA/GDPR without sacrificing precision. 

Efficiency in Computation and Communication: Average training duration per node is 55 minutes per round; network 

bandwidth utilization is approximately 120 MB per update. Compression with quantized gradients (8-bit) decreased bandwidth 

by 41% with minimal accuracy loss (Δ AUC = 0.002). This scalability indicates the viability of deploying hospital consortia. 

Effects of Non-IID Data: Simulated heterogeneity among nodes (subtype-imbalanced cohorts) diminished accuracy by 

approximately 3%, although adaptive re-weighting of local losses reinstated equivalence. This illustrates robustness to real-world 

distribution skew, a common constraint in clinical federated learning experiments (Li et al., 2023). 

Interpretability and Clinical Confidence: Explainability is essential for clinical adoption. SHAP visualizations facilitated case-

level analysis: for instance, in a patient forecasted to be non-responsive to platinum chemotherapy, heightened BRCA1 mutation 

likelihood and PI3K-pathway activity were significant determinants. Clinicians could thereby elucidate the algorithm's reasoning, 

so augmenting confidence and promoting dialogue with patients. Additionally, feature attributions were consolidated into 

pathway-level significance maps. These summaries can direct oncologists toward therapeutic approaches, such as mTOR 

inhibitors, when dominance of the AKT pathway is identified. This interpretability transcends prediction to provide practical 

information in precision medicine. 
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Fig. 5: SHAP Feature Importance: highlights top predictive biomarkers (TP53, BRCA1, PTEN, etc.) 

Statistical Significance and Robustness: All metric enhancements were statistically significant at α = 0.05 following false 

discovery rate correction. Bootstrap resampling (1,000 iterations) validated stability: 95% confidence interval for AUC = 0.93–

0.95. Cohen’s d = 1.21 signified a substantial impact magnitude in comparison to EHR baselines. Sensitivity analyses (modulating 

learning rate ± 20% and dropout ± 0.1) resulted in accuracy variations of less than 1%, so affirming the robustness of the 

hyperparameters. 

Clinical and Translational Significance: 

Advancing Precision Oncology in Real-World Applications: The integrated model represents a state-of-the-art clinical 

decision support (CDS) system with continuous learning capabilities. Within a hospital network, each institution may function as 

a federated node, contributing to the global model when new patients receive treatment. This infrastructure would enable 

dynamic adaptation to new medication responses and resistance patterns, realizing the "learning health system" concept 

articulated by the U.S. National Academy of Medicine. 

Prospective Clinical Workflows: The OncoData-Fusion operational workflow creates an ongoing, privacy-protecting learning 

cycle among institutions. Upon patient admission, genetic sequencing data and essential electronic health record (EHR) variables 

are processed locally at each node to uphold data sovereignty. The local prediction phase allows the node model to produce 

personalized risk evaluations and recommend effective treatment plans based on combined multi-omics and clinical data. Upon 

the documentation of treatment outcomes, the federated update phase conveys solely encrypted model weights—rather than 

unprocessed patient data—to the central aggregator, thereby guaranteeing secure information dissemination. The global 

optimization phase integrates these distributed updates, refines the shared model, and redistributes it among all participating 

nodes, therefore augmenting collective intelligence over time. This closed feedback loop efficiently converts static clinical 

guidelines into dynamic, evidence-based recommendations that continuously alter based on fresh patient data and institutional 

experiences 

Integration with Preexisting Systems: The model conforms to HL7 FHIR and OMOP CDM standards, facilitating interoperability 

with prominent EHR suppliers (Epic, Cerner). Integration through RESTful APIs and on-premises GPU servers is technically viable 

and adheres to hospital IT regulations. 

Ethical, Legal, and Social Examination 

Prejudice and Equity:  Subgroup analysis indicated negligible performance variation based on sex or ethnicity (Δ AUC < 0.02). 

However, it is essential to deliberately incorporate federated nodes representing marginalized populations to maintain equity. 

Future implementations ought to employ bias-mitigation strategies, such re-weighting or adversarial debiasing. 

Data Governance and Accountability: Federated configurations allocate both data and accountability. Shared governance 

models—memoranda of agreement between institutions—must delineate auditing procedures, update intervals, and monitoring 
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for model drift. Transparent documentation adhering to the Model Cards framework (Mitchell et al., 2019) guarantees 

traceability for regulators. 

Regulatory Conformance: Explainable outputs adhere to the fundamental tenets of the EU AI Act (2024) and the FDA Good 

Machine Learning Practice. Federated aggregation complies with the GDPR's "data-minimization" principle. Thus, the OncoData-

Fusion methodology offers a compliant framework for ethical artificial intelligence in oncology. 

Technical Constraints: Synthetic wearable data. While statistically accurate, generated signals may not accurately represent 

actual sensor noise. 

2. Scope of Federated Simulation. All nodes functioned within a singular cluster; inter-institutional network latency was simulated 

rather than physically dispersed. 

3. Computational expenses. Training necessitates approximately 12 GPU hours every global round, potentially restricting 

participation from smaller hospitals. 

4. Restricted clinical factors. The MIMIC-IV EHR is deficient in longitudinal radiation and pathological imaging data; the 

integration of radiomics is a forthcoming priority. 

These limitations reduce generalizability but do not undermine the validity of the proof of concept. 

Comparison with State-of-the-Art Systems 

Comparative superiority in both accuracy and compliance underscores the novelty and practical relevance of the OncoData-

Fusion system. 

Future Research Directions: Subsequent inquiries should focus on using the OncoData-Fusion framework in clinical settings 

and enhancing its multi-modal functionalities. Future clinical studies are crucial for implementing federated prototypes within 

real hospital networks, confirming model stability and generalizability in active healthcare settings. 

Table 2. Performance and Feature Comparison of the Present Study Against Contemporary Q1 Publications (2022–2025) 

Study Approach Dataset AUC Explainability Privacy 

Naik et al. (2024) Centralized multi-omics DNN Breast cancer 0.89 Partial No 

Li et al. (2024) CNN + EHR fusion Lung cancer 0.86 Limited No 

Rajput et al. (2024) Explainable ensemble Pan-cancer 0.90 Yes No 

This study Federated Transformer Fusion Multi-cancer (26 k cases) 0.94 Full (SHAP) Yes 

 

Integration of radiomics should be undertaken to combine imaging-derived embeddings with current omics and clinical data, 

enhancing comprehensive multi-modal learning. Edge-AI optimization with lightweight inference engines like TensorRT and 

ONNX Runtime can provide low-latency bedside analytics for real-time applications. Moreover, governance frameworks for 

continuous learning that include automatic drift detection and periodic re-training will be essential for maintaining long-term 

model validity. Ultimately, creating an open-source consortium that brings together academic and industry partners under 

secure, privacy-preserving protocols would enhance transparency, scalability, and continuous innovation—thereby establishing 

AI as a fundamental infrastructure for next-generation precision medicine. 

Synthesis of Findings: The empirical evidence validates the central hypothesis: Integrating heterogeneous omics with clinical 

and real-time data in a federated, explainable framework significantly enhances predictive precision while upholding ethical and 

legal standards. By quantifying gains originally theorized by Ahmed et al. (2025), this study demonstrates that big-data 

intelligence can be both powerful and principled. 

5. Conclusion 

This research transforms the conceptual vision of Ahmed et al. (2025) into an empirically validated, data-driven system for 

personalized cancer therapy. The proposed OncoData-Fusion framework unifies genomics, proteomics, metabolomics, EHR, and 
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real-time wearable data through a privacy-preserving federated-learning architecture coupled with explainable artificial 

intelligence. Using large public repositories (TCGA, METABRIC, CPTAC, MIMIC-IV) and simulated sensor streams, the model 

achieved 92 % accuracy and AUC 0.94 for therapy-response prediction of 27 % over conventional EHR-only models and 8 % over 

centralized multi-omics baselines. 

Beyond numerical performance, the study demonstrates that transparent, federated analytics can satisfy ethical and regulatory 

imperatives while preserving interpretability and reproducibility. SHAP analysis linked top predictive features (TP53, BRCA1, 

PTEN, EGFR) to canonical oncogenic pathways, confirming biological plausibility. Survival analysis revealed a hazard-ratio 

discrimination of 2.8, illustrating tangible prognostic value. 

The OncoData-Fusion framework conceptually integrates three fundamental pillars that characterize next-generation oncology. 

The initial pillar, scientific integration, combines multi-omics data with real-time physiological signals to reveal multiscale factors 

influencing therapy response and illness progression. The second pillar, technical integrity, underscores the implementation of 

federated and explainable AI systems that attain superior predictive performance while ensuring algorithmic transparency and 

reproducibility. The third pillar, ethical alignment, incorporates privacy protection, fairness, and strong governance systems in 

compliance with international legal frameworks, including HIPAA, GDPR, the EU AI Act, and the FDA’s Good Machine Learning 

Practice (GMLP) requirements. Collectively, these pillars establish OncoData-Fusion as a scientifically robust, technologically clear, 

and ethically sound model for precision oncology within the context of advanced healthcare systems. 

Collectively, these contributions advance oncology from a static, population-based discipline toward an adaptive, continuously 

learning ecosystem. Clinically, the framework can serve as the backbone of decision-support tools that update in near-real time 

as patients are treated, transforming the health-care feedback into a living model of evidence generation. 

Practical Implications 

The OncoData-Fusion framework offers transformative implications across clinical, research, and policy spheres. For clinicians, 

interpretable dashboards generated from federated models enable personalized therapy selection, proactive toxicity monitoring, 

and accurate outcome prediction while preserving patient privacy. For researchers, the open-source federated infrastructure 

facilitates collaborative model development and validation across institutions without requiring cross-border data exchange, 

thereby accelerating reproducible, privacy-compliant scientific discovery. For policymakers, the demonstrated compliance 

pathway serves as a regulatory blueprint for overseeing high-stakes AI systems in healthcare, illustrating how robust governance, 

transparency, and ethical safeguards can coexist with technological innovation to foster responsible advancement in precision 

medicine. 

Limitations and Future Work 

While results are promising, several limitations warrant further research. Synthetic wearable data, although statistically validated, 

may not fully capture physiological noise; hence, real-world sensor integration remains a priority. True multi-institution 

federation with heterogeneous hardware must be tested to assess communication latency and robustness to non-IID data. 

Expanding the model to include radiomics and pathology imaging could yield a comprehensive multi-modal precision-oncology 

platform. Finally, establishing a multi-center clinical trial will be essential for translational validation and regulatory clearance. 

Closing Statement 

Artificial intelligence in oncology has reached an inflection point: predictive accuracy alone is no longer sufficient. Systems must 

also be interpretable, equitable, and secure. The OncoData-Fusion framework embodies these principles, offering a replicable, 

ethically grounded architecture capable of transforming how cancer is understood and treated. By uniting the power of big data 

with the responsibility of good science, this study contributes a foundational step toward the realization of truly personalized, 

data-centric cancer care. 
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