
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 400

| RESEARCH ARTICLE

Unified Multi-Channel AI Orchestration Platform Architecture

Ishant Goyal1 ✉ Gireesh Patil2 and Amjad Shaikh3

123ServiceNow Inc., USA

Corresponding Author: Ishant Goyal, E-mail: ishantgoyal64@gmail.com

| ABSTRACT

The unified Multi-Channel Platform (MCP) server architecture centralizes management, orchestration, and governance of AI

agents across enterprises. Organizations deploying autonomous agents face challenges with siloed implementations,

inconsistent standards, and security vulnerabilities. The MCP architecture addresses these by establishing a separation between

the Control Plane for governance and the Data Plane for execution. Core components include service registries, policy engines,

context services, sandboxed runtimes, and protocol adapters connecting to enterprise systems. This architecture provides

consistent security through authentication, authorization, and audit logging, while enabling governance workflows for agent

lifecycle management from draft to retirement. Integration strategies allow AI agents to interface with existing enterprise

platforms like Salesforce, SAP, and ServiceNow via pre-built connectors. Scalability, multi-tenancy, and blast radius reduction

ensure the platform can grow securely across the organization, supported by cloud-native infrastructure and federated

governance models that balance innovation with control.

| KEYWORDS

AI Orchestration, Enterprise Integration, Security Governance, Multi-Tenancy, Control Plane Architecture.

| ARTICLE INFORMATION

ACCEPTED: 03 October 2025 PUBLISHED: 19 October 2025 DOI: 10.32996/jcsts.2025.7.10.42

1. Executive Summary

Enterprises are rapidly deploying AI agents and intelligent assistants to automate workflows, but many efforts remain siloed pilot

projects.

Industry research shows that over half of enterprises had introduced AI agents by early 2025 (with 35% more planning to by

2027)[1]. Without a unified management approach, organizations face "agent sprawl" – a proliferation of bots and tools each

built ad hoc with their integrations, security configurations, and maintenance burdens[1].

This white paper proposes a unified Multi-Channel Platform (MCP) server architecture to centrally orchestrate AI agents and their

tool usage across the enterprise. By providing a common control layer (analogous to "Kubernetes for AI models"[2]) for routing

requests, enforcing policies, and integrating with systems of record, the MCP architecture enables scalable, secure, and

governable AI deployments.

In the pages that follow, the business and technical rationale for centralizing agent and tool management, and describe the

target architecture in depth – including the control plane, data plane, and core components such as:

● Service registries

● Policy engines

● Protocol adapters

● Execution sandboxes

JCSTS 7(10): 400-425

Page | 401

● Context services

A detailed security model of this platform (covering authentication, authorization, secrets handling, network isolation, and

compliance) and outline governance workflows for agent/tool lifecycle management, approvals, version control, risk assessment,

and observability.

Integration strategies are discussed to show how the MCP can connect AI agents with enterprise platforms like Salesforce, SAP,

Workday, and ServiceNow in a consistent, reusable manner.

This also address key challenges (scalability, federated governance, multi-tenancy, blast radius reduction) and provide a phased

rollout roadmap from MVP to full production. The paper concludes with technology stack recommendations – highlighting

cloud-native, open-source, and enterprise-grade options to implement this architecture.

1.1 Key Takeaways:

● Centralized Management: A centralized MCP platform offers a "single pane of glass" to manage diverse AI agents and

tools, avoiding fragmented standards and duplicated effort [1] while enforcing uniform security and compliance controls [1].

This significantly reduces operational risk and accelerates time-to-value for AI solutions.

● Architectural Separation: The architecture separates concerns into a Control Plane (governance, orchestration, policy

enforcement) and a Data Plane (execution of agent logic and tool actions). Core services like registries, policy engines,

context/memory stores, and sandboxed executors work in concert to route AI requests to the right models or workflows

under strict guardrails.

● Security by Design: Security and Trust are woven throughout the design – from robust authentication and fine-grained

RBAC, to secrets management and per-agent sandboxes with network isolation. Every action is authorized and logged to

ensure traceability and compliance with regulations.

● Governance Framework: Governance processes (approval workflows, versioning, audits, monitoring) are built into the MCP,

allowing organizations to control the entire lifecycle of AI agents and integrations. This prevents "shadow AI" and ensures

each deployment meets corporate standards for safety, quality, and ethics.

● Enterprise Integration: The platform readily integrates with existing enterprise systems through modular adapters and

connectors. AI agents can securely interface with CRM, ERP, HR, ITSM, and communication tools via standardized APIs –

enabling multi-step workflows that span silos.

● Enterprise-Scale Architecture: The proposed approach addresses scalability (through stateless services and horizontal

scaling), multi-tenancy (tenant-aware isolation), and federated governance (delegating control to business units within a

central framework) to support enterprise-wide adoption. By minimizing the blast radius of any agent's actions or failures, the

MCP enables safe experimentation and expansion of AI capabilities.

● Phased Implementation: A phased implementation plan is recommended, starting with a focused MVP (covering core

orchestration and one or two critical integrations), then iteratively expanding to more agents, more tools, and stricter

governance in later phases. Early wins in a controlled scope build the foundation for broad production deployment.

● Flexible Technology Options: Multiple technology stacks can realize this architecture. A various options leveraging cloud-

native infrastructure (containers, Kubernetes, service mesh), open-source components (for identity, policy, orchestration,

etc.), and enterprise solutions – guiding architects to assemble a platform that is both cutting-edge and compliant with

organizational IT standards.

In summary, this white paper provides enterprise architects and technology leaders with a comprehensive blueprint for a unified

AI orchestration platform. The goal is to unlock the full potential of AI agents across channels and applications – while

maintaining the control, security, and reliability that enterprises demand. Next, the motivations for centralizing agent

management, before exploring the architecture and its elements in detail.

2. Introduction: The Case for Centralized AI Agent Management

As organizations embrace autonomous AI agents to handle complex tasks, a clear pattern has emerged: decentralized, one-off

deployments do not scale. Early implementations often start as isolated chatbots or scripts solving a specific problem, but

when enterprises attempt to roll out dozens of such agents enterprise-wide, they encounter serious pain points.

2.1 The Problem of Decentralized AI Deployments

Ad-hoc implementations lead to each agent requiring:

● Its integrations

● Custom code

● Separate security reviews

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 402

● Manual maintenance[1]

This not only wastes effort but also creates inconsistent behaviors and potential security gaps. Gartner warns that without a

centralized management approach, IT leaders will face an "explosion of agent sprawl" that introduces significant security,

compliance, and version-control risks[1].

In one survey, 31% of companies expressed reluctance to let AI agents access sensitive data without proper oversight [1] –

underscoring that trust and governance are major barriers to scaling these solutions.

2.2 Business Rationale

A unified platform for AI agents promises faster deployment, lower costs, and better outcomes. Rather than reinventing the

wheel for each new use case, teams can discover and reuse pre-built agents and connectors from a central catalog [1]. This

accelerates proofs-of-concept and enables business leaders to address common workflows (e.g., invoice processing, customer

FAQs, IT support) with minimal custom development.

Centralization drives standardization – all agents follow the same:

● Integration patterns

● Data formats

● Metadata schemas [1]

This consistency reduces maintenance overhead: for example, if a backend API changes, a single update to the connector in the

platform can propagate to all agents that use it [1].

Furthermore, central governance ensures that every agent meets enterprise security and compliance policies (access controls,

audit logging, data handling rules) by design [1]. In short, a centralized MCP server becomes an enterprise AI "app store" where

solutions can be deployed with confidence, because they come with baked-in controls and have passed a standard approval

process [1].

2.3 Technical Rationale

Modern AI systems increasingly consist of multiple cooperating models and agents, each specialized for certain tasks [2].

Managing these as a coherent whole requires an orchestration layer – much like microservices require an orchestrator.

An MCP (sometimes dubbed an "agent control plane") fills this need by acting as the routing and coordination hub [2]. It:

● Directs each user request to the appropriate model or chain of tools

● Handles intermediate data passing

● Enforces that agents operate within allowed bounds

This is analogous to how cloud control planes schedule containers: the MCP dynamically allocates AI "workflows" to available

models/agents and tool APIs based on context and policy, rather than hardcoding interactions in each agent.

Without such a layer, adding a new integration or changing an AI model would require editing numerous agents individually– a

brittle and error-prone approach. A unified control plane abstracts these complexities, offering a consistent interface for agents

to request actions ("send an email", "query customer database"), which the platform translates into API calls behind the scenes

[2].

This decoupling between AI logic and integration logic means:

● AI developers can focus on prompt design and reasoning strategies

● The platform handles connecting to enterprise systems and data sources in a secure, standardized way [2]

Finally, central management addresses the critical need for observability and control in AI deployments. When dozens of

autonomous processes are operating with access to business systems, operators need a clear view and a firm hand on the reins.

A central MCP provides unified dashboards, logs, and controls to monitor all AI agent activities [2].

It becomes feasible to answer questions like:

JCSTS 7(10): 400-425

Page | 403

● Which agent took an action on the finance system at 2 AM?

● How often does the customer support bot escalate to a human?

● Are all agents using approved versions of our LLM models?

Without a central orchestrator, such oversight is nearly impossible, since each agent would be a black box. For all these reasons,

enterprises are increasingly recognizing the need for a control plane – even envisioning it as an "agent mesh" to securely

connect AI agents, tools, and models across environments [2].

The next sections describe the architecture of this MCP platform, detailing how it functions as the backbone for scalable, secure,

and interoperable AI agent ecosystems.

3. Architecture Overview: Control Plane and Data Plane

Fig 1: Multi-Channel Platform (MCP) Architecture [2, 3]

At a high level, the MCP server architecture is split into two layers: a Control Plane and a Data Plane. This design follows a

principle common in cloud and network architectures, where the control plane handles coordination and policy decisions, and

the data plane carries out the actual execution of tasks.

3.1 Core Architecture Components

In the MCP context:

● The Control Plane is responsible for:

○ Deciding which agent or tool should handle a request

○ Enforcing policies and routing rules

○ Managing the overall state and context for interactions

● Data Plane is responsible for:

○ Invoking AI models

○ Running agent code

○ Executing API calls or tool actions in response to control plane directives [3]

3.2 Request Flow Process
When a user query or event comes in (whether via a chat interface, web portal, or other channel):

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 404

1. It first passes through a Protocol Adapter module in the data plane

2. The adapter translates channel-specific input (e.g., a Slack message or a ServiceNow incident event) into a standardized

request format

3. The request then enters the MCP Control Plane, which orchestrates the end-to-end fulfillment of the task

3.3 Control Plane Processing Steps

The control plane will typically perform the following steps for each request:

3.3.1- Service Registry Lookup

● The control plane consults a registry or directory of available agents, tools, and AI models

● This service registry acts as a catalog that knows what capabilities exist (e.g., a "Customer Support Agent" or a "Weather API

tool"), including their versions and endpoints [2]

● Using metadata in the request (such as the user's intent, channel, or department), the MCP routes the request to the

appropriate agent or sequence of agents

● The registry decouples configuration from code – if an agent is updated or a model endpoint changes, updating it in the

registry updates it for all uses

● This is analogous to a microservice registry in a service mesh, ensuring the right model or tool version is invoked under each

scenario [2]

3.3.2 Policy Engine and Guardrails

● An embedded policy engine evaluates governance rules applicable to each request

● These policies can include:

○ Authentication checks

○ Authorization rules

○ Rate limits

○ Content filters

● The MCP enforces fine-grained permissions – for example:

○ Ensuring an HR chatbot cannot retrieve finance data

○ Preventing a marketing content generator from posting to social media without approval [2]

● Mature MCP architectures integrate with enterprise identity systems (SSO, RBAC/ABAC) so user roles inform policy decisions

[2]

● Every request and action is logged for audit purposes [2]

● This yields a centralized point of control: no AI agent action goes unchecked

3.3.3 Context & Memory Services

● Provides contextual data and state to agents

● The MCP offers:

○ Conversation history store

○ Vector database for long-term semantic memory

○ Caches of recent results [2]

● When a new request arrives, the control logic can fetch relevant context (user profile, conversation history, domain

knowledge) and supply it to the AI agent [2]

● Benefits include:

○ Consistency – different agents see a coherent view of user/session state

○ Policy enforcement – agents only retrieve the context they are allowed to see

○ Simplified agents – they interface with the MCP's context API rather than implementing their memory storage

3.3.4 Orchestration & Workflow

● With the target agent identified and policies cleared, the control plane triggers execution of agent logic

● In complex scenarios, the control plane may orchestrate multi-step workflows:

○ First, a retrieval step to fetch data

○ Then a reasoning step with an LLM

○ Finally, a tool invocation step

● The control plane manages these flows, including branching logic or fallback behaviors

● It maintains the transaction context as the request moves through various modules

● If any step fails or a policy violation occurs, the control plane handles error recovery or rollback actions

JCSTS 7(10): 400-425

Page | 405

3.4 Data Plane Components

Meanwhile, the Data Plane hosts the runtime environments that carry out the AI computations and interact with external

systems:

3.4.1- Execution Sandboxes
● AI agents run inside isolated execution environments

● These could be:

○ Containerized microservices

○ Serverless function sandboxes

○ Dedicated VM environments

● The sandbox enforces boundaries defined by control plane policies

● This containment dramatically limits the blast radius of an agent if it misbehaves [4]

● Sandboxing also provides resource isolation with CPU/memory quotas [1]

● The MCP might spin up ephemeral containers for each agent session or use a pool of warm executors

3.4.2 Protocol Adapters

● When an agent needs to communicate with an external system, it calls through a protocol adapter

● These adapters are connectors that interface with specific external systems:

○ SaaS applications (Salesforce, SAP, Workday, ServiceNow)

○ Databases

○ Legacy SOAP services

○ Cloud APIs

● Agents invoke them via a simple, unified interface

● Hundreds of out-of-the-box connectors can be provided [1]

● Each adapter handles:

○ Authentication and API specifics

○ Data translation between formats

● Protocol adapters act as universal translators between AI agents and enterprise software

3.4.3 Tool and Model Invocations

● Some tasks require calling AI models or utility tools

● The MCP provides abstraction layers for these services

● For example:

○ A model gateway service exposing various AI models through a unified API

○ Secure tools for executing functions or running searches

● Centralizing tool execution ensures consistent logging and error handling

3.5 Architectural Benefits

Throughout the process, the platform's design ensures a clear separation: the control plane makes decisions and monitors, while

the data plane performs the actions. This offers several benefits:

● Scalability: Control components can scale independently from worker/sandbox components

● Resource Optimization: The Control plane is typically lightweight (mostly coordinating), while the data plane can be

scaled for heavy loads

● Security Isolation: If needed, they can be isolated on different network segments (control plane in trusted zone, data

plane in semi-trusted execution zone)

The next subsections will examine these key architectural components in more detail, exploring how each one functions within

the overall MCP ecosystem:

3.6 Control Plane Core Components

3.6.1 Service Registry & Directory

A database or service that tracks all AI agents, tools, and integrations available on the platform.

Key features:

● Stores metadata such as agent name, version, description, owner, status (draft/production), and execution endpoints

● For tools, includes API endpoints, required credentials (via secret references), and supported actions

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 406

● Enables dynamic discovery – the MCP can query "which agent can handle a Finance: InvoiceApproval task" and route

accordingly

● Supports version management with multiple versions of agents or models registered simultaneously

● Allows control plane to direct traffic to appropriate versions (e.g., for A/B testing or phased rollouts) [2]

By maintaining this catalog, the platform avoids hard-coded addresses; everything is loosely coupled and looked up at runtime,

allowing easy updates and additions.

3.6.2 Policy Engine

The brains behind enforcement, this component evaluates inbound requests and agent action requests against a set of

policies/guardrails.

Key characteristics:

● Policies are written in high-level declarative form (e.g., "Agent X can only access database Y during business hours")

● The engine checks:

○ Who (user or agent identity)

○ What (action or tool requested)

○ When/Where (context)

○ Then decides: allow vs. deny (or sometimes modify, e.g., mask certain data)

● Integrates with authentication/identity data to get user roles or attributes

● Logs all decisions for audit purposes

● Enterprise implementations may integrate open-source policy frameworks or existing GRC tools.

Crucially, policy enforcement and decision-making are centralized here, rather than spread across agents [2]. This yields uniform

application of security rules across all AI behaviors.

3.6.3 Orchestration & Workflow Manager
Often realized as a workflow orchestration engine or rules engine, this module allows the definition of multi-step agent

workflows or chaining of agents/tools.

Capabilities:

● Defines complex workflows (e.g., "Hire Employee" process with steps like: parse resume → extract skills → create record

→ send welcome email)

● Executes flows that are either statically defined or dynamically composed by agent reasoning

● Works closely with the registry and policy engine during execution

● Modern implementations leverage state machines or DAG-based orchestrators (Apache Airflow, Temporal, etc.)

● Handles timeouts, retries, and compensating actions if needed (e.g., if step 3 fails, undo steps 1-2 to maintain

consistency)

3.6.4 Context/Memory Store

The control plane includes databases for different types of context, providing agents with the necessary history and knowledge.

Types of stores:

● Short-term memory store (caching recent conversation turns or task state for active sessions)

● Vector database for long-term knowledge (storing embeddings of documents or past interactions)

● Specialized stores like key-value caches or document retrieval systems [2]

Benefits:

● Multiple agents can share knowledge when appropriate

● Users get a seamless experience when switching channels (e.g., from Teams to email)

● Context service abstracts the underlying storage and provides APIs for agents to fetch/update context

● Can implement automated context injection, appending relevant knowledge to the agent's input [2]

This ensures agents have the data they need to perform tasks without direct human prompting each time.

3.6.5 Monitoring & Observability

Within the control plane, an observability service aggregates logs, metrics, and traces from all components [2].

JCSTS 7(10): 400-425

Page | 407

Features:

● Every user query, agent action, and tool invocation is traced through unique request IDs

● Dashboards for performance metrics:

○ Latency

○ Success/failure rates

○ Request throughput

○ Token usage for LLMs

● Usage analytics (which agents are popular, tool call frequency) [1]

● Error logs and exceptions for debugging agent behavior

Observability is not just for operations – it feeds governance too, such as detecting unusual patterns that might indicate misuse.

3.7 Data Plane Core Components

3.7.1 Agent Execution Environment

The platform implements a dedicated agent runtime service for instantiating and running AI agent logic.

Characteristics:

● Responsible for running agent code (prompt orchestration, function calling, etc.)

● Ensures agents can access necessary libraries (e.g., frameworks like LangChain)

● Injects credentials and configuration at runtime securely (via secrets management)

● Typically includes sandbox isolation (Docker containers with limited network access or locked-down VMs)

● Centrally schedules agent runs for efficient resource utilization

3.7.2 Tool/Integration Adapters

For each category of external system, the platform provides adapter services that mediate interactions.

Implementation details:

● Some adapters function as stateless proxies (e.g., REST proxy to Salesforce, adding OAuth tokens)

● Others maintain state or caching (email adapters might queue messages)

● Handle authentication to external systems using stored credentials from secure vault [1]

● Unify protocols – convert SOAP or proprietary SDKs to simple REST interfaces.

● Similar to integration platforms like Zapier, translating high-level intents to specific API calls [2]

Key benefits:

● Consistent error handling and logging across all integrations

● Standardized error messages sent to agents or the control plane

● Built-in compliance checks before data leaves or enters agents

● Data protection (e.g., automatically redacting PII from HR system responses)

3.7.3 Model Gateway & AI Services

Many MCP architectures include specialized components for AI model access, especially when multiple agents share LLMs.

Advantages:

● Acts as an intermediary between agents and AI models

● Allows pooling of requests (reusing context windows, maintaining conversation state)

● Applies common safety filters to prompts and responses

● Can orchestrate multi-model pipelines (retrieval → summarization → reasoning) [2]

● Isolates heavy ML inference (possibly on GPU instances) from lighter control logic

● Improves scalability by allowing independent scaling of the model serving layer

The control plane calls the model gateway as it would any other tool, maintaining architectural consistency.

3.7.4 Shared Data Repositories

In the data plane, shared databases or file storage facilitate larger data transfers between components.

Use cases:

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 408

● Processing large files (e.g., CSV files placed in cloud storage with an agent given reference)

● Shared results database where agents write outputs for other systems or agents

● Accessed via adapters or context services with proper access controls

● Tenant isolation to prevent cross-tenant data access

With these components in place, the MCP server functions as a modular, extensible platform. New AI agents can be added

simply by registering them and deploying their code into the sandbox environment – the platform handles integration with

enterprise systems via existing adapters. New integrations can be developed once and leveraged by all current and future

agents.

This unified architecture promotes a "compose, don't build from scratch" philosophy for AI capabilities, allowing enterprises to

rapidly scale intelligent automation across channels.

In the next section, outlines how security is enforced throughout this architecture, ensuring that these powerful AI agents remain

under strict control.

4. Security Model and Governance Controls

One of the primary motivations for centralizing AI agent orchestration is to impose a robust security and compliance framework

around autonomous agents. In a world where an AI-driven process could potentially move funds, change records, or leak data at

machine speed, the MCP platform must act as a safety net and control point. This section describes the security model of the

unified MCP server architecture, covering authentication, authorization, secrets management, network isolation, and compliance

measures. This white paper outlines also outline governance workflows in the next section, as security and governance are tightly

intertwined.

4.1 Authentication and Identity

All interactions with the MCP – whether initiated by end-users (through channels) or by agents invoking tools – must be

authenticated. The platform should integrate with enterprise identity providers (e.g., Azure AD, Okta, LDAP) to verify user

identities and propagate them into agent contexts.

For example, if an employee asks a question in Slack to an AI assistant, the MCP can require a signed token from Slack that maps

to that user's corporate identity. Internally, the platform might issue its short-lived tokens for session continuity.

Strong multi-factor authentication (MFA) is recommended for any admin access to the MCP and for any high-privilege actions an

agent might take [4]. Service-to-service authentication (between the control plane and data plane components, or adapters)

should use mutual TLS or token-based auth to prevent spoofing. Essentially, zero-trust principles apply – every request is

verified.

4.2 Authorization and Access Control

Once identity is established, the MCP enforces role-based or attribute-based access controls (RBAC/ABAC) for every action [2].

Each agent and tool is associated with permission scopes. For instance, an "IT Support Agent" might be authorized to create

tickets in ServiceNow but not to access HR databases. The control plane's policy engine checks these permissions on each

request [2].

If a user lacks rights to perform a certain operation via an agent, the request is denied or escalated for approval. The platform

should implement least-privilege defaults – agents only get the minimal access they require. Overly broad permissions are a

serious risk, as they create a large blast radius if an agent is compromised [4].

Therefore, policies must be granular: not just at the agent level, but down to specific tool functions and even content (e.g., allow

an agent to retrieve customer data but mask the credit card numbers). All policy decisions and agent actions are recorded in

audit logs for later review [1].

The system can also include real-time anomaly detection – for example, alert if an agent suddenly accesses a system it has never

used before or if one user triggers an unusually high volume of actions. Modern solutions might leverage an Open Policy Agent

(OPA) or similar engine to manage rules consistently across microservices.

JCSTS 7(10): 400-425

Page | 409

4.3 Secrets Management

The MCP platform will need to handle numerous sensitive credentials – API keys for external services, database passwords,

OAuth tokens, etc. A best practice is to never expose raw secrets to the AI agents. Instead, the platform should integrate a

secure vault (such as HashiCorp Vault, AWS Secrets Manager, etc.) where all secrets are stored and rotated.

Adapters pull the necessary credentials from the vault at runtime and use them to authenticate outbound calls [1]. Agents

themselves only reference logical names or IDs for secrets (e.g., "CRM_API_TOKEN"), and the platform resolves them securely.

This ensures an agent's code or prompt cannot inadvertently leak a secret – the agent might say "connect to Salesforce", and the

platform adds the token.

Additionally, by centralizing secrets, it's easier to enforce rotation policies, monitor usage, and immediately revoke access if

needed (for example, if an API key is suspected to be compromised, disabling it in the vault cuts off all agents using it instantly).

Secrets in transit and at rest should be encrypted, and access to the vault strictly limited to the MCP services that require it.

4.4 Network and Execution Isolation

As discussed under architecture, the execution sandboxes form a core security layer. Each agent run happens in an isolated

container/VM with only the necessary network access. For instance, if an agent only needs to call two internal APIs and has no

internet, its sandbox's network policy should block all other egress. This prevents an agent from exfiltrating data to an unknown

server even if it tries (whether due to a prompt injection or malicious inputs) [4].

Similarly, the sandbox should have restricted file system access – ideally stateless, with no ability to read/write outside

designated directories (any needed persistent data goes through the context services). If possible, system calls or execution of

arbitrary OS commands should be limited or monitored. Some organizations use gVisor or Firecracker micro-VMs to add extra

isolation for running untrusted code that an agent might generate.

The platform's internal network design should also isolate the control plane (which holds sensitive policy logic and keys) from

the data plane. For example, the data plane might sit in a segregated subnet with only API access to control plane endpoints, so

if an adapter is compromised, it cannot directly reach the databases or core systems.

In essence, defense-in-depth is applied: even if one layer (say, an agent's prompt filtering) fails, the network layer, OS layer, and

policy layer still mitigate damage. These measures sharply reduce the potential blast radius – any incident would be contained to

a narrow scope rather than cascading enterprise-wide [4].

4.5 Data Security and Compliance

The MCP server must enforce data protection rules to comply with regulations and internal policies. This includes encryption of

data at rest and in transit throughout the platform [1]. All communications between components should use TLS. Sensitive data

fields can be encrypted at the application level as well (for instance, storing an OAuth refresh token encrypted in the database).

The platform itself should adhere to enterprise security standards – obtaining certifications like ISO 27001 and SOC 2 for the

overall solution helps demonstrate that appropriate controls are in place [1].

In terms of data handling, the MCP can implement policy-as-code checks within workflows: e.g., automatically run a "PII

redaction" step on any text an agent is about to send out of a protected environment [1]. If the content violates compliance

(contains SSN or credit card numbers, etc.), the action can be halted or require a human override. This kind of automated

compliance gating is essential, especially for industries like finance and healthcare.

Audit logging is another compliance pillar – the MCP should log not only technical events but also who approved what (for

changes or overrides), to have a trail for regulators or internal audit.

4.6 Input Sanitization and Output Filtering

A unique aspect of AI systems is vulnerability to prompt injection or output misuse. The MCP security model should include

validating and sanitizing inputs that come from users before they reach an agent [4]. This might involve stripping or encoding

certain patterns that could be malicious (like a user trying to trick an agent by including a command in their prompt).

Similarly, the outputs from AI models should be passed through filters to prevent unintended leakage. For example, if an agent

somehow tried to output a secret or large sensitive text, a post-processor could catch that and redact or block it. Some

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 410

organizations even route model prompts through a proxy that checks against a list of forbidden patterns or sensitive keywords,

as noted by security researchers [4]. While no filter is foolproof, these steps add another layer of protection.

4.7 Continuous Monitoring and Response

Security is not a one-time configuration – it requires ongoing monitoring. The MCP platform should integrate with the

enterprise's Security Operations Center (SOC) tooling. All logs (auth events, policy denials, unusual agent behavior) can feed into

a SIEM system where security analysts or automated threat detection systems can look for signs of compromise.

The platform can also have built-in alerting – e.g., if an agent starts failing multiple policy checks or if an admin changes a

sensitive setting, trigger an alert. Regular red-teaming and pen-testing of the MCP is advisable, given it's a new class of

infrastructure that attackers might target (the "connective tissue" between AI and data [4]). Lessons from such tests can inform

tighter policies.

In the event of an incident, having kill-switch capabilities is key: administrators should be able to pause all agent activity or a

specific agent with one command if something fishy is detected, essentially putting the system in a safe state until issues are

resolved.

In summary, the MCP server's security model is comprehensive: it authenticates identity, rigorously authorizes every action,

keeps secrets out of reach, isolates execution environments, encrypts and audits data flows, and maintains oversight at all times.

By treating the MCP layer as a high-value security surface (as important as your core databases or network), enterprises can

avoid the pitfalls of unchecked AI automation. Next, discussion also addresses governance workflows that complement these

technical controls – ensuring that humans remain in the loop appropriately and that the introduction of new agents/tools is

managed responsibly.

5. Governance and Lifecycle Management

Implementing a unified AI agent platform in an enterprise goes hand-in-hand with establishing governance workflows to

manage the lifecycle of agents and tools. Governance determines how new agents are onboarded, how changes are reviewed,

how risks are mitigated, and how performance is measured. Without structured governance, even a technically secure platform

could devolve into chaos – with unapproved "shadow AI" agents popping up or outdated versions lingering in use [1]. This

section outlines the governance processes recommended for the MCP architecture, focusing on tool/agent lifecycle stages,

approval workflows, versioning, risk management, and observability.

5.1 Lifecycle Stages and Approvals

Each AI agent or integration should progress through defined lifecycle stages – for example: Draft, Testing, Approved for

Production, Deployed, and eventually Retired [1].

In the Draft stage, developers (or citizen developer business users, in a low-code scenario) can design and configure the agent

within a sandboxed dev environment. Once they believe it's ready, the agent enters a Review and Approval stage. Here, a

designated governance body – often a Center of Excellence (CoE) or an architecture review board – evaluates the agent. They

check that it meets all requirements: the prompts or code have been tested for quality, appropriate policies are attached, and no

sensitive data is mishandled.

Only after this review (and any required adjustments) is the agent marked Approved for Production [1]. The MCP platform can

facilitate this by requiring an electronic approval (with record of who approved and when) before an agent's status can be

toggled to "Production".

When approved, the agent can then be deployed (made live for end-users or integrated into workflows). It's recommended to

have a staging environment where approved agents run in a limited way before full rollout (for example, enabled for a small set

of users or with real data but monitoring closely) [1]. Only after passing staging does it go fully live.

Finally, when an agent is no longer needed or is being replaced, it should be formally retired – removed from the registry and

prevented from executing further (but archived for audit/history). This formal lifecycle ensures there is always traceability: one

can answer who approved this agent and when, what version is running, and who is responsible for it.

JCSTS 7(10): 400-425

Page | 411

5.2 Versioning and Change Management

AI agents will evolve – models get updated, prompts refined, new features added. The platform should enforce version control

for agent definitions and any associated assets (prompts, code, configs). A best practice is to manage these in a source control

system (like a Git repository) and integrate that with the deployment process.

Every agent or tool adapter thus has version tags, and the registry stores the current active version as well as previous ones.

When a new version is ready, governance may require a comparison and re-approval if the changes are significant. Techniques

like canary deployments can be used: e.g., run the new version for 5% of requests to gather metrics before full cutover.

The MCP might support running multiple versions concurrently, routing a small percentage of traffic to the new one (especially

useful for critical agents where mistakes are costly) [2]. If any issue is detected, the platform can quickly roll back to the prior

stable version. All these changes should be logged: the platform's audit should show a timeline like "Agent X v1.2 deployed on

Oct 10 by Jane Doe, replacing v1.1" [1].

Moreover, backward compatibility should be considered for tools – if an external API changes (say Salesforce API v40 to v50), the

adapter version might change, and agents reliant on it need to be tested. The managed marketplace approach advocated earlier

makes this easier: the platform owners update the connector, and all agent packages using it can be validated centrally [1].

5.3 Risk Assessment and Classification

Not all AI agents carry equal risk. Governance processes should include a risk classification for each agent/tool, which determines

the level of scrutiny and controls applied. For example, an agent that summarizes public news articles has low risk, whereas an

agent that executes trades or modifies customer data is high risk.

High-risk agents might require more rigorous testing (including adversarial testing for prompts), formal sign-off from a senior

risk manager, and perhaps additional guardrails (like requiring human confirmation on each action). The CoE can define risk tiers

and associated requirements.

During the approval stage, the agent is assessed:

● What systems will it touch?

● What's the impact of a mistake?

● Is there any regulatory compliance impact (like does it handle personal data subject to GDPR)?

Based on this, the agent could be marked as "High Risk – Financial" or "Moderate Risk – Internal only", etc., and the MCP can

enforce policies accordingly (for instance, requiring that any output from a high-risk agent is also sent to an audit queue for

review).

Regular risk reviews should also be scheduled – e.g., every 6 months, revisit whether the agent's risk profile changed (maybe it

started doing more tasks). Another governance mechanism is to set time-bound approvals: an agent might be approved for

production for one year, after which it must be re-certified, or it will be auto-disabled. This ensures ongoing oversight rather

than set-and-forget.

5.4 Observability and Auditing

Governance is greatly enhanced by the platform's ability to observe and report on agent activities. Dashboards showing each

agent's performance and usage are not just for operations – they are governance tools.

For instance, usage metrics can reveal if an agent is being underutilized (perhaps it's not needed or could be merged with

another) or over-utilized (perhaps indicating it's become critical and needs more resources or failover planning). Success/failure

rates and accuracy metrics give insight into whether an agent is meeting its business objective reliably [1].

If an agent has a high error rate, governance might decide to suspend it until fixes are made (again highlighting the need for

easily rolling back to a previous version if a new version is underperforming).

The audit logs are a goldmine for accountability: every action an agent takes on external systems should be logged with what

was done, by which agent, on whose behalf (which user), and when. Ideally, it should also log why (e.g., "Invoice Approval Agent

sent an email to X because invoice #123 was approved by AI logic").

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 412

These logs allow forensic analysis if something goes wrong – for example, if a customer complains about a weird email they got,

one can trace it to the exact agent action. The platform's unified logging [2] means no more hunting through disparate system

logs.

Governance teams should regularly review audit logs and perhaps implement automated checks (for example, ensure that no

agent performed an action outside of business hours unless it was explicitly allowed). Accountability is crucial: by centralizing

agent actions in one pipeline, it becomes clear who or what is responsible for outcomes [1]. Some organizations even choose to

expose a summary of agent decisions to end-users or compliance officers as part of transparency (e.g., a customer support agent

might annotate "this response was generated by AI and then approved by John Doe").

5.5 Governance Board and Workflows

On the organizational side, it's recommended to establish a cross-functional governance board or Center of Excellence for AI

agents. This group (comprising IT, security, compliance, and business unit representatives) would own the policies and oversee

the lifecycle processes.

Workflows can be defined such that: a business unit that wants a new AI agent must submit a request/proposal to this group,

including the intended purpose, data needed, etc. The CoE can provide templates and best practices to ensure consistency. They

also maintain the catalog of approved agents (the registry, in effect) and periodically review it for consolidation opportunities or

to retire those that are outdated.

The CoE should ensure alignment with corporate policies – e.g., if the company has a stance on AI ethics or usage of certain data,

the agents are compliant. They also handle exception cases: if someone wants to deploy an agent quickly, bypassing some steps

(perhaps in an emergency), a waiver process should involve the CoE, and such cases should be rare.

By having a formal governance workflow, the enterprise prevents "random AI bots" from running amok – everything is visible

and controlled [1]. This does not mean stifling innovation; on the contrary, by providing a clear path and guardrails, business

units can deploy agents faster because they know exactly what process to follow, rather than navigating ad-hoc approvals each

time.

Figure 2: AI Agent Governance Lifecycle [1]

JCSTS 7(10): 400-425

Page | 413

5.6 Continuous Improvement and Feedback

Governance is not just gatekeeping; it's about ensuring the AI platform delivers value and improves over time. The MCP should

facilitate feedback loops. Users interacting with AI agents should have an easy way to provide feedback (did the agent solve your

issue? Was the recommendation correct?). This feedback can be collected via the interface (thumbs-up/down buttons or short

surveys) and fed into the platform's analytics.

The CoE can analyze this data to identify where agents might need retraining or reconfiguration. Additionally, as the AI models

evolve (new versions of GPT, etc.), governance oversees how those updates are incorporated – possibly testing new model

versions with a subset of agents and measuring if performance (e.g., accuracy of answers) improves. The platform might support

an experimentation framework for this purpose.

Observability ties in here: metrics like accuracy scores or user satisfaction scores per agent are key to determining if an agent

remains fit for purpose [1]. If an agent's performance drifts (perhaps due to model drift or changing data), the governance

process should catch that and trigger a refresh or retraining.

Essentially, govern the AI agents like products, with an ongoing lifecycle of monitor → feedback → iterate [1]. This ensures the

platform continues to deliver ROI and doesn't become stale.

By embedding these governance workflows into the MCP platform's operations, enterprises create a virtuous cycle: they can

confidently scale up AI agent usage knowing that each new addition is vetted, each change is tracked, and overall risk is

managed. The combination of technical controls (security model) and procedural controls (governance) is what enables safe

adoption of AI at scale.

In the following section, considered how this MCP architecture integrates with existing enterprise systems and outline strategies

for connecting to major platforms like Salesforce, SAP, and others – a key part of realizing the business value of these agents.

6. Integration Strategies with Enterprise Platforms

A multi-channel AI orchestration platform only becomes truly useful when it can interface seamlessly with the myriad enterprise

applications and data sources that drive business processes. Most organizations have a mix of SaaS platforms (CRM, ERP, HR

systems), custom databases, legacy on-prem applications, and modern cloud services. The MCP server architecture is designed

to function as an integration hub, letting AI agents and tools work across these systems without each agent individually coding

to every API. This section outlines strategies for integrating the MCP with enterprise platforms such as Salesforce, SAP, Workday,

ServiceNow, and others, in a secure and scalable manner.

6.1 Pre-built Connectors and APIs

The fastest path to integration is leveraging or building pre-built connectors for popular platforms. Many enterprise systems

have well-defined APIs (REST, SOAP, RPC), and the MCP can provide adapter modules for each.

For example, a Salesforce connector can handle authentication (OAuth flow to Salesforce), query or update records via the

Salesforce REST API, and return the results in a normalized format (e.g., JSON). Similarly, a SAP connector might use OData or

RFC calls under the hood to perform transactions.

By packaging these connectors into the MCP, any agent can simply call a generic function (like CRM.searchContacts(name)) and

the platform does the rest. As noted earlier, an effective agent platform includes "hundreds of out-of-the-box connectors" for

common enterprise apps [1]. In our architecture, these correspond to the Protocol Adapter components in the data plane.

The benefit is clear: developers don't need to write custom integration code for each agent. Instead, they drag-and-drop or call a

high-level API, and the connector module "translates" that into the specific calls to, say, SAP S/4HANA or Workday's API,

handling all required mappings and protocols [1]. The connectors also ensure consistent security – for instance, using stored

service accounts or delegated user credentials properly.

6.2 Unified Data Format and Interface

Each enterprise system speaks its language (different data schemas, endpoints, etc.). To simplify agents' work, the MCP can

adopt a unified interface approach. This means standardizing how agents request data or actions.

For instance, the platform could expose a GraphQL layer that abstracts various backends – an agent might ask for:

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 414

employee(id: 123) {

 name,

 title,

 vacationBalance

And the platform's GraphQL resolver knows to fetch part of that from Workday (for name, title) and part from an internal HR

database (for vacation balance), then combine results.

Alternatively, a more code-based approach uses a common SDK or library that agents use: e.g., a Python library for

enterprise.fetch("employee_data", id=123) that under the hood calls the appropriate adapter.

The key strategy is interoperability: ensure that adding a new enterprise system doesn't require changing all agents, rather just

adding a new adapter that conforms to the existing interface contracts [1]. Many integration platforms utilize JSON as the lingua

franca – the connector will output JSON regardless of whether the source was XML or a database, etc., allowing agents (and

LLMs) to consume it easily. In the architecture, the connectors likely use JSON-over-HTTPS or similar as the uniform medium,

which drastically reduces development effort and avoids custom parsing in each agent [1].

6.3 Event-Driven Integration

Not all integration is request/response. Some enterprise workflows will be event-driven – e.g., a new ticket created in ServiceNow

should trigger an AI agent to categorize or respond to it. The MCP can integrate via webhooks or messaging queues to handle

such scenarios.

For instance, ServiceNow or Salesforce can be set to send a webhook (HTTP callback) to a specific MCP endpoint whenever a

certain event occurs (new case, deal closed, etc.). The platform's channel adapter for that service receives the webhook,

transforms it into a standardized event object, and then invokes the appropriate agent or workflow.

Alternatively, the enterprise might have an ESB (Enterprise Service Bus) or message queue (Kafka, JMS, etc.) where events are

published – the MCP can subscribe to relevant topics. Embracing an event-driven pattern ensures the platform can proactively

react to changes, not just act when a user asks something.

For example, the MCP could host an agent that monitors for high-priority incidents (from an ITSM system) and automatically

summarizes and broadcasts them to a Slack channel for awareness. The integration strategy here involves building listeners for

those events within the MCP, which likely means running lightweight web services or using serverless functions to catch events

and feed them into the control plane. Many enterprise apps support these hooks, and the MCP's integration catalog should

document how to enable them (for example, providing a URL for a webhook that the admin can plug into Salesforce workflow

rules).

6.4 Enterprise Workflow Systems

Large enterprises often use orchestration or workflow systems (like SAP Process Orchestration, Oracle BPM, or modern iPaaS

solutions like MuleSoft, Boomi). The MCP should integrate with, not necessarily replace, these existing investments.

One strategy is to treat the MCP as a specialized microservice accessible from those systems. For instance, a ServiceNow

workflow could make REST calls to the MCP's API to leverage an AI agent at a certain step (like ask an AI to draft an incident

resolution). Conversely, the MCP could call out to trigger workflows in those systems if needed.

Having well-defined APIs on the MCP (both synchronous and asynchronous) allows other orchestration engines to plug in. This is

often facilitated by the API gateway or adapter layer – essentially exposing certain agent functions as APIs that external systems

can call with proper authentication.

In the following architecture, one could deploy the MCP behind an enterprise API Gateway (like Apigee or Kong) to unify how

internal developers call it. The API-first design of the platform (as Unleash described) means you can embed and customize it

within existing pipelines via APIs [2]. So integration is a two-way street: the MCP calls internal systems via connectors, and

internal systems call the MCP via its APIs.

6.5 UI Integration (Chatbots and Portals)

Multi-channel means an AI agent could be accessed through Slack, MS Teams, email, voice, or a web portal. Each of these

channels requires a bit of integration effort as well.

JCSTS 7(10): 400-425

Page | 415

For chat platforms like Slack/Teams, one typically creates a bot user that connects via the platform's API or SDK. The MCP's

channel adapter for Slack, for example, would use Slack's Events API to receive messages directed to the bot, forward them into

the control plane with the user identity and context, and then post the agent's response back via Slack's Web API. Similarly, for

Microsoft Teams or other chat systems.

The idea is to implement a channel adapter per communication channel, which could be relatively lightweight – just

transforming messages to/from the common format and handling authentication (e.g., verifying a Slack signature on incoming

requests). These adapters are part of the data plane, as shown earlier.

Integration with voice platforms (like Amazon Alexa, Google Assistant, or telephony IVR) might involve using their SDKs to

capture voice input, translate it to text (if not provided), and send it to the MCP, then reading out the response. For web portals

or intranet sites, integration might be embedding a chat widget or using the MCP's API directly from the web app (with

appropriate CORS and auth).

The strategic goal is to meet users where they are – the MCP should make it easy to integrate any new channel by providing a

template adapter. For example, if tomorrow the company adopts a new collaboration tool, one can build an adapter plugin for it

and immediately all the existing agents could be accessible on that channel too (since the core logic is centralized). This

dramatically improves the multi-channel reach of AI assistants without duplicating logic.

6.6 Security and Compliance in Integration

When integrating with enterprise systems, it's critical to respect the security and compliance constraints of those systems. The

MCP should use the principle of least privilege for its integrations – for example, if connecting to Salesforce, create a dedicated

integration user with only the needed permissions (read accounts and create tasks, for instance, if that's all the agent needs). The

credentials for that user are stored in the secure vault, as discussed.

Many enterprise platforms support OAuth scopes – use the narrowest scopes possible when obtaining tokens for the MCP.

Additionally, data that comes from these systems might be sensitive (e.g., personal data from Workday). The MCP's compliance

filters (like PII check steps) should be applied when agents are handling this data [1].

An integration strategy might also involve data masking: for instance, if using production data in testing an agent, go through a

data anonymization pipeline. The connectors could optionally interface with a data virtualization or masking layer if the

enterprise has one (some companies have all database queries go through a proxy that masks certain fields; the MCP could

leverage that rather than direct DB connections).

In short, integrating doesn't mean bypassing existing controls – instead, the MCP should honor all security models of the

integrated apps, often by impersonating a user or using controlled service accounts, and by logging all interactions for audit on

both sides.

6.7 Enterprise Platform Extensions

Some platforms, like Salesforce and ServiceNow, allow writing custom logic on their side (Apex code, ServiceNow scripts). In

some cases, it might be beneficial to deploy a companion agent or logic within those systems that communicates with the MCP.

For example, if low latency is needed for a certain action within SAP, maybe an SAP script calls the MCP asynchronously. Or a

ServiceNow business rule might call an MCP agent to classify a ticket, but the ServiceNow side may have fallback logic if MCP

doesn't respond in X seconds.

These are integration design considerations to ensure that adding AI automation doesn't disrupt the core system's reliability. The

MCP's adapters should be robust – e.g., implement circuit breakers so if ServiceNow is down, the agent knows to skip that step

or retry later rather than hanging indefinitely.

Overall, the integration strategy is to treat the MCP as an orchestration layer that sits on top of and alongside existing systems,

not replacing their functionality but enhancing it. By providing pre-built connectors, uniform interfaces, and event handling, the

MCP can orchestrate multi-system workflows that were previously too cumbersome to automate.

A classic scenario might be: an AI agent listens for a new customer issue in CRM, looks up relevant data in ERP, uses an LLM to

draft a personalized resolution, creates a ticket in ServiceNow, and notifies the customer via email – all of which requires

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 416

touching multiple systems. With a unified platform, this entire chain becomes a configurable flow rather than a months-long

integration project.

In the subsequent section on challenges, discussion on how scaling such integrations and handling multiple tenants or business

units can be managed. But first, let's consider some of those cross-cutting challenges, like scalability and multi-tenancy, in more

detail, and how the architecture mitigates them.

7. Scalability, Multi-Tenancy, and Other Challenges

Building an MCP server architecture for enterprise use entails addressing several cross-cutting challenges beyond the core

design. Key among these are scalability (can the platform handle growing load and complexity?), federated governance (can

different teams or regions use it without conflict?), multi-tenancy (can one platform securely serve multiple groups or clients?),

and blast radius reduction (ensuring failures or breaches have limited impact). A detailed examination of each challenge and

outline how the architecture and governance approaches discussed mitigate them.

7.1 Scalability and Performance

As the number of AI agents, connected tools, and user interactions grows, the platform must scale without becoming a

bottleneck.

Key architectural considerations:

● Control plane components should be designed as stateless, horizontally scalable services

● Multiple instances of the orchestration service can run behind a load balancer

● Shared state (context memory, service registry) stored in scalable databases or distributed caches

● The data plane can scale out with many sandbox containers running in parallel across a cluster

● Container orchestration (Kubernetes or similar) helps automate scaling

Resource management strategies:

● Implement quotas on agents (e.g., limit of X CPU or Y memory per container)

● Configure auto-scaling triggers based on queue lengths or throughput

● Monitor system-level metrics (CPU utilization, memory usage, throughput per node)

● Employ caching layers to reduce load on external systems and improve response times.

● Ensure shared runtime environments with quotas so no single agent monopolizes resources [1]

For particularly resource-intensive agents (e.g., those performing complex data analysis), the platform can isolate them to

dedicated resource pools or scale them independently. Performance testing with simulated loads is crucial to ensure the MCP

meets service level agreements (SLAs) for response times.

7.2 Federated Governance and Tenant Isolation

In a large enterprise, different departments might want autonomy in managing "their" AI agents, while central IT/CoE provides

overarching governance.

Architecture support for federated governance:

● Implement tenant or namespace segregation in the registry (Finance agents vs. HR agents)

● Delegate access management to respective teams while the central policy engine enforces global rules

● Tag agents and resources with tenant ID or org ID

● Scope RBAC permissions to prevent cross-department interference (finance can't alter HR agents)

● Enable controlled catalog sharing (agents can be published company-wide after extra review)

Some enterprises might operate multiple MCP instances (e.g., one per region or business unit). In such cases:

● Ensure consistency of policies across instances

● Consider federation of knowledge (global dashboards aggregating metrics from all instances)

● Use infrastructure automation to deploy clones easily

● Synchronize certain global settings across instances

For SaaS deployments serving multiple external clients, strict tenant isolation is mandatory:

● Isolate each client's data, agents, and runtime containers

● Design with multi-tenant architecture (tenant IDs on every record) and/or separate clusters per client

● Implement strong security boundaries (separate VPC networks or namespaces)

JCSTS 7(10): 400-425

Page | 417

● Test rigorously to ensure one tenant cannot access another's data, even via side channels

Without proper isolation, overly broad permissions could create a "massive blast radius" where one tenant's issue affects all [4].

7.3 Blast Radius Reduction

The goal is to limit the impact of any single failure or compromise. The MCP architecture addresses this at multiple levels:

Agent-level containment:

● Sandboxing and permission scoping ensure rogue agents can't escalate privileges [4]

● Each agent is constrained to authorized systems only

System-level isolation:

● Clear module boundaries (control vs. data plane, separate microservices for adapters)

● Component failures remain contained (e.g., if the SAP connector fails, the Salesforce connector continues working)

● Circuit breakers and fallbacks in the integration layer isolate issues

● Least privilege principles limit what an attacker could access if they compromise an agent

● Network segmentation ensures compromised containers have limited access paths

Resiliency techniques:

● Bulkheading (separating thread-pools or resources) prevents resource starvation

● Separate worker queues per integration type

● Elasticity plus segmentation enables graceful degradation under stress

● Monitoring and automated limits can detect and contain unusual behavior

Compartmentalization is a recurring theme: by compartments, by service, by tenant—all designed to confine problems to the

smallest scope possible.

7.4 Complexity and Maintenance

With numerous moving parts, the platform could become complex to maintain.

Integration management challenges:

● Keeping connectors updated as external APIs change

● Mitigate by using vendor-supported SDKs when possible

● Monitor deprecation notices from integrated platforms

● Consider adopting integration frameworks (Apache Camel, enterprise iPaaS) that maintain connector libraries

Knowledge management:

● Document how each integration is configured

● Track where credentials live

● Maintain the platform's knowledge base for operations teams

Model management:

● Track versions and performance of multiple AI models

● Consider integrating a model registry (MLflow or similar)

● Enable the MCP to query model performance metrics

7.5 Latency Considerations

Orchestrating multi-step workflows across systems might introduce latency, yet users expect responsive agents.

Optimization strategies:

● Execute independent steps in parallel

● Implement strategic caching of results

● Pre-fetch data for ongoing conversations (e.g., fetch related data anticipating follow-ups)

● Locate the MCP infrastructure close to enterprise systems (network-wise)

● Consider distributed deployment of components (run adapters near the systems they connect to)

7.6 Compliance and Ethical Guardrails

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 418

Federated governance often means operating under different jurisdictions or policies in different regions.

Regional compliance approaches:

● Allow policy variations by context (EU region agents enforcing GDPR rules more strictly)

● Configure data residency controls (ensure data and logs stay in the region)

● Deploy separate instances per region with appropriate storage locations

Ethical considerations:

● Integrate AI content moderation services into workflows

● Check outputs with moderation APIs or custom models

● Balance added complexity against the importance of broad acceptance

Many of these challenges are addressed not by one feature but by the sum of architectural choices and governance practices

described. By using a modular, cloud-native design, the platform can scale out and isolate faults. By embracing multi-tenant

design from the start, it can partition data and config per team or client to avoid interference. By establishing governance

oversight, even federated, the organization retains control even as usage grows. And by planning rollouts in phases with

feedback (as the next section covers), complexity can be tamed – you start simple and gradually introduce more agents and

integrations, which lets the team learn and adjust before things get too large.

In the next section, A detailed outline a recommended rollout path from MVP to full production, which implicitly addresses

complexity by phasing capabilities. This phased approach will incorporate what discussed about scaling and governance,

ensuring the platform matures in step with the organization's readiness.

8. Rollout Roadmap: From MVP to Production

Implementing a unified MCP server in an enterprise is a significant undertaking. It's wise to approach it in phases, starting with a

Minimum Viable Product (MVP) and progressively adding capabilities and scale. This phased rollout not only reduces risk (you

can catch issues early in a limited scope) but also helps build stakeholder confidence with quick wins. Below is a high-level

roadmap outlining key phases from MVP to full production deployment:

8.1 Phase 1 – Pilot MVP

Focus on deploying 1–3 high-value AI agents in a controlled setting [1].

Key activities:

● Implement the core control plane (basic routing, simple policy enforcement)

● Deploy a subset of the data plane needed for these agents

● Choose one focused use case (like IT helpdesk triage or FAQ bot for HR)

● Integrate only necessary platforms (e.g., Slack as the channel and ServiceNow as the backend)

● Keep the user group small – one department or a few testers

● Gather feedback on the agent's performance

Goals and metrics:

● Prove the concept and identify any technical gaps

● Measure response times, resolution rates, and user satisfaction for the pilot agents

● Test the initial security model on a small scale

● Address any issues discovered (integration problems, policy refinements) before broader rollout

Success criteria: The pilot agents demonstrably save time or improve outcomes in their limited scope (for instance, reduce ticket

handling time by X%, or answer Y% of questions without human help), and users express confidence in the system.

8.2 Phase 2 – Scale-Out and Hardening

Using lessons from the pilot, expand the platform to additional departments and use cases [1].

Expansion activities:

● Integrate more enterprise platforms (Salesforce, SAP, etc.) for new agent use cases

● Develop additional agents (sales support agent, finance report agent)

● Increase the user base across departments

● Add more channels (Teams, email, in addition to Slack)

JCSTS 7(10): 400-425

Page | 419

Technical improvements:

● Harden and optimize the architecture

● Set up proper load balancing and implement auto-scaling rules

● Improve logging and monitoring based on Phase 1 learnings

● Enforce more comprehensive security policies

● Configure redundancy and failover (multiple availability zones or data centers)

Governance establishment:

● Formalize governance processes for new agents

● Implement approval workflows and risk assessments

● Launch the Center of Excellence with regular review meetings

● Refine user experience and integration points based on feedback

● Add escalation mechanisms where needed (agent creates a ticket when they can't help)

By the end of Phase 2, the MCP platform should be handling multiple concurrent workflows reliably and have earned the trust of

multiple business units.

8.3 Phase 3 – Enterprise-Wide Production & Continuous Improvement
In this phase, the MCP platform becomes a production service supporting mission-critical processes across the enterprise [1].

Enterprise deployment:

● Roll out all planned agents and integrations to their target users

● Deploy dozens of agents across various domains (customer service, finance, operations)

● Integrate with many enterprise systems

Operational focus:

● Emphasize operational excellence and continuous improvement

● Monitor key metrics closely (system throughput, error rates, cost of LLM API calls)

● Optimize for efficiency – improve prompt engineering or implement caching to reduce costs [1]

● Gather ongoing user feedback for feature refinements

Organizational integration:

● Provide training and enablement for end-users

● Address cultural resistance by highlighting success stories

● Train developers to create new agents using the platform's tooling

● Prepare administrators who will maintain the system [1]

● Integrate with broader IT ecosystem (central monitoring, incident response plans)

● Treat the MCP as a core piece of infrastructure

8.4 Phase 4 – Expansion and Optimization (Ongoing)

After initial enterprise-wide deployment, the journey continues with ongoing expansion and optimization.

Continuous evolution:

● Add new agents as the business identifies additional use cases

● Fine-tune or retire existing agents based on performance

● Upgrade underlying models and incorporate new technologies

● A/B test new LLM models and measure improvements

● Build adapters for newly adopted SaaS applications

Governance consistency:

● Maintain consistent governance – all new additions undergo the same vetting

● Periodically review the agent portfolio for redundancies

● Evaluate if agents are delivering the expected ROI

● Tie metrics to business KPIs (cost saved, revenue influenced, time saved)

Optimization efforts:

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 420

● Rightsize infrastructure and optimize costs

● Consider using spot instances for batch jobs

● Adjust policies as regulations evolve (AI Act, data laws)

● Add new capabilities like explainability reports if required by regulations

Phase 4 is fundamentally about keeping the platform aligned with evolving business needs and technology advances, ensuring

long-term value.

Figure 3: MCP Implementation Roadmap - From MVP to Enterprise Scale [1]

8.5 Communication and Stakeholder Engagement

Throughout all phases, communication and stakeholder engagement are vital:

● Early on: Celebrate small wins from the pilot to get buy-in (e.g., "HR bot answered 500 employee questions in its first

month, freeing up 100 hours of HR staff time")

● During scale-out: Keep executives informed with dashboards demonstrating the platform's value

● Always: Maintain transparency about issues and ensure prompt resolution to build trust

● Support model: Establish clear channels for reporting malfunctions or requesting features

By following this phased approach, the enterprise can gradually build up the MCP platform from a concept to a mission-critical

capability. Each phase provides an opportunity to refine the technology and processes, reducing risk and ensuring that by the

time the platform is widespread, it is robust and well-governed.

Next, the technology stack considerations to implement this architecture effectively, leveraging cloud-native and open-source

options for an enterprise-grade solution.

9. Technology Stack Recommendations

Designing and implementing the MCP server architecture will involve selecting a robust technology stack. The choices should

align with the platform's requirements for scalability, security, and flexibility, as well as the enterprise's existing IT standards. Here

provided recommendations for the key layers of the stack, including cloud-native infrastructure, open-source components, and

enterprise-grade tools that can be combined to build the solution.

JCSTS 7(10): 400-425

Page | 421

9.1 Cloud-Native Infrastructure

Containerization and orchestration are foundational for a scalable, portable platform. Docker can be used to containerize the

microservices (control plane services, adapters, agent runtimes). For orchestration, Kubernetes (K8s) is an ideal choice – it's

industry-standard for deploying complex microservice architectures and supports multi-cloud or on-prem deployments.

Kubernetes will handle scheduling sandbox containers for agent executions, scaling out adapter services, and providing

resilience (through features like ReplicaSets and self-healing).

To manage network isolation at the container level, consider using Kubernetes network policies or a service mesh. A service

mesh like Istio or Linkerd can provide fine-grained control of service-to-service communication, mutual TLS encryption out of

the box, and traffic management (useful for implementing canary releases of new agent versions, etc.). It also aids observability

with tracing and metrics for service calls. If the enterprise is cloud-centric, managed Kubernetes services (like Amazon EKS, Azure

AKS, or Google GKE) can reduce operational overhead. These cloud platforms also offer features like auto-scaling groups, which

the MCP can leverage to scale worker nodes up/down based on load.

9.2 Identity and Access Management

For authentication and authorization, integrating with the enterprise SSO is key. Solutions like OAuth 2.0 / OIDC providers (e.g.,

Azure AD, Okta, or Keycloak if open-source) can provide identity tokens for users. The MCP's control plane can verify these

tokens for user requests. Internally, Keycloak (an open-source IAM server) could be deployed to handle RBAC for the platform's

management UI and APIs. Keycloak can sync with LDAP/AD, providing a bridge to enterprise identities.

For service-to-service auth, using JWTs issued by an internal authority or mutual TLS with certificates (possibly managed by the

mesh) are good approaches. Authorization policies might be implemented with Open Policy Agent (OPA), an open-source policy

engine that integrates with microservices to enforce Rego policies (like who can call what). OPA could be deployed as a sidecar

in K8s or as a centralized service; it's well-suited to evaluate policies at runtime across the stack [5].

9.3 Secrets Management

HashiCorp Vault is a popular open-source choice for a centralized secrets manager. It can securely store API keys, passwords,

certificates, and dynamically issue short-lived credentials (for databases or cloud access), which is great for the rotating

credentials strategy [4]. Vault has a robust API that the MCP platform can call when an adapter needs a secret – it can even inject

secrets as environment variables into containers at runtime in Kubernetes (using Vault Injector or Kubernetes secrets manager

integration).

If the enterprise prefers cloud-managed services, AWS Secrets Manager or Azure Key Vault are also options – these can be called

from adapters to fetch secrets on the fly, and cloud IAM can ensure only the MCP pods have access to the secrets they need.

9.4 Datastores and Caches

The service registry, policy definitions, and other metadata likely need a reliable database. A PostgreSQL or MySQL relational

database could serve as the registry (storing agent definitions, versions, policy rules, audit logs, etc.). These are open-source and

enterprise-hardened, with many managed variants available. For context and session data that require fast access (conversation

state, short-term memory), a distributed cache like Redis is recommended. Redis can store key-value pairs for session context

and is very fast for quick lookup by agent ID or user session ID.

If using vector embeddings for semantic memory, an open-source vector database like Milvus or FAISS (or a managed one like

Pinecone) could be integrated to store embeddings and perform similarity search. This would plug into the context service – e.g.,

when an agent needs to retrieve knowledge, it queries the vector DB. For large content storage (like storing conversation

transcripts or file data), using a cloud object storage (S3 or Azure Blob, or on-prem storage) is prudent, with references stored in

the DB as needed. All these data stores should be configured for high availability (e.g., primary-replica setup for Postgres, Redis

cluster mode, etc.) to ensure no single point of failure.

9.5 Orchestration and Workflow Engine

If the platform supports complex multi-step workflows, an engine or framework can speed development. One option is

Temporal.io, an open-source workflow orchestration engine that is cloud-native and can orchestrate distributed workflows with

reliability (it handles retries, history, etc.). Another is Apache Airflow (though that's more for data pipelines than interactive

agents). For more rule-based flows, a business rules engine like Drools could be used to encode decision logic that the control

plane uses to pick agents or actions.

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 422

However, a simpler approach might be to implement custom orchestration logic within the control plane service using a

programming language and good design – possibly leveraging async task queues (e.g., Celery for Python or RabbitMQ for

message passing between control plane and workers). The exact choice depends on team familiarity; if .NET is big in the

enterprise, they might use Azure Logic Apps or Durable Functions for orchestrations. The key is whichever tool; ensure it can

integrate with Kubernetes and the rest of the stack (most can, via Docker containers or operators).

9.6 Agent Development Framework

To implement the AI agent logic (the reasoning, tool usage, etc.), developers might use an existing agent framework or library.

For instance, LangChain (open-source) is a popular framework in Python/JavaScript for building agents with LLMs and tool

integrations. LangChain could be embedded in the agent execution environment, allowing quick composition of LLM calls and

tool usage sequences. Another emerging approach is using libraries like Transformers or Haystack for QA bots, etc.

Depending on language preferences (Python is common for AI, but some enterprises might prefer Java or C# for certain

integrations), pick a framework that suits. The MCP should not be tied to one framework, though; it might allow multiple types of

agents (one agent could be written in Python, another in Node.js). Using containerization, you could even support

heterogeneous runtimes – e.g., run a Node-based agent in one container, a Python one in another. The platform's role is to

orchestrate and govern them, not dictate their internal code (aside from requiring the interface compliance). However, providing

a software development kit (SDK) or template to implement agents can help standardize how they receive context and return

outputs to the MCP. This SDK could wrap around LangChain or others to fit the platform's API.

9.7 Monitoring and Logging

For observability, adopting the ELK stack (Elasticsearch, Logstash, Kibana) or newer variant EFK (with Fluentd) is a common open-

source solution. All services and adapters can output logs to a central Elasticsearch index where Kibana dashboards show

aggregated logs. For metrics, Prometheus (for scraping metrics from services) and Grafana (for dashboards and alerts) are a

powerful combo. Many components like Kubernetes and Istio come with Prometheus metrics out of the box (e.g., container CPU,

HTTP request counts, etc.). Setting up Grafana Alertmanager can deliver alerts (to email/Slack) when something goes out of

range (like a high error rate on an adapter).

For tracing individual requests through the microservices, OpenTelemetry can be used, with traces sent to a tracing backend like

Jaeger or Zipkin. This would allow developers to see a timeline of each request's path (user message → control plane → adapter

X → response, etc.), invaluable for debugging complex interactions. Security monitoring should not be forgotten: integrating

with a SIEM like Splunk or using open-source Wazuh/Ossec agents on the nodes could complement the stack. Cloud providers

also have monitoring (e.g., CloudWatch, Azure Monitor), which can be integrated if running there.

9.8 Enterprise Integration and APIs

To expose the MCP's capabilities, one might use an API gateway. Kong, KrakenD (open-source), or cloud API gateways (Apigee,

Azure API Mgmt) could front the platform's API endpoints, providing extra security (rate limiting, IP filtering) and a unified entry

point. This is useful if external apps or mobile devices will call the MCP API. Within the enterprise, if using an ESB or message

bus, using Kafka or RabbitMQ for events is common – these could be part of the stack if event-driven patterns are heavily used.

For example, deploy a Kafka cluster if needed and use a Kafka connector (maybe via Kafka Connect or a custom consumer) as

part of the data plane to feed events to agents.

9.9 Open-Source vs Enterprise Balance

Many suggestions above are open-source, which is great for flexibility and avoiding vendor lock-in. However, enterprise-grade

often implies support and compliance. It could be wise to use managed or supported distributions: e.g., Red Hat's OpenShift for

K8s if the enterprise is Red Hat-oriented, or Confluent for Kafka. Some vendors provide "enterprise-hardened" versions of open-

source components (like Confluent for Kafka, Elastic.co for ELK, etc.). If internal expertise is strong, pure open-source is fine;

otherwise, consider vendors for critical components to get support SLAs. Ensure whatever is chosen meets compliance needs (for

example, if using open-source components, keep them updated to patch security issues, and consider scanning containers for

vulnerabilities regularly).

9.10 AI/ML Services

For the AI part, besides the agent frameworks, one might integrate external AI services. For instance, the MCP could use OpenAI

API or Azure OpenAI for LLMs, or Google Dialogflow for some NLU tasks. These are enterprise-grade AI APIs. If data sensitivity is

a concern, using open-source models deployed internally (like running GPT-J or LLaMA variants on enterprise servers) is an

option – there are frameworks like HuggingFace's Transformers serving or NVIDIA Triton Inference Server for hosting models.

JCSTS 7(10): 400-425

Page | 423

Many enterprises adopt a hybrid: use a local model for sensitive data tasks and call a powerful external model for others. The

architecture should accommodate both.

9.11 UI/Management Layer

The platform will need a UI for administrators (and possibly for end-users to browse available agents). Building a simple web

dashboard for the CoE/admins to manage agents, view logs, set policies, etc., can be done with standard web frameworks (React,

Angular for front-end; Node.js, Django, or .NET for backend, depending on internal preference). Since Unleash and ZBrain

highlight an "app store" UI, consider implementing something similar for your internal use – it improves adoption when users

can easily find what agents exist. If the enterprise uses an ITSM or portal (like ServiceNow or SharePoint) as a central place,

integration might mean surfacing some of this info there (but at least an independent UI is good for admin operations, not

meant for everyone). Open-source admin tools could be leveraged where available, but likely this will be custom.

Component Recommended Technologies Key Considerations

Infrastructure
Kubernetes, Docker, Istio/Linkerd,

EKS/AKS/GKE

Multi-cloud support, container orchestration

maturity, and infrastructure automation

Security &

Identity

Keycloak, OAuth/OIDC, Open Policy Agent,

HashiCorp Vault

Enterprise SSO integration, fine-grained

access control, and secrets rotation

Data Storage
PostgreSQL/MySQL, Redis, Milvus/FAISS,

S3/Azure Blob

High availability, performance for context

lookups, and vector search capabilities

Orchestration
Temporal.io, Airflow, Custom workflows,

Celery

Workflow complexity, reliability

requirements, and error handling needs

Integration
Kong/Apigee API Gateway, Kafka/RabbitMQ,

Custom adapters

Enterprise system compatibility, legacy

support, event-driven capabilities

AI Framework
LangChain, HuggingFace, OpenAI API, Azure

OpenAI

Model flexibility, prompt engineering

capabilities, and performance requirements

Monitoring
ELK/EFK stack, Prometheus, Grafana,

OpenTelemetry

Observability depth, alerting capabilities, and

dashboard customization

Table 1: Recommended Technology Stack Components for MCP Implementation [1, 2, 4, 5]

In summary, a possible stack could look like: Kubernetes orchestration on Azure (AKS), deploying containerized Python services

(control plane built with FastAPI or Flask, for example), Istio mesh for traffic and security, Postgres for metadata, Redis for

caching, Vault for secrets, Keycloak for identity, OPA for policy, LangChain + OpenAI API for the agent logic, Elastic Stack +

Prometheus/Grafana for observability. All behind Kong API Gateway and integrated with Azure AD for SSO. This is just one

illustrative combo – many variations could achieve the goals.

Crucially, whatever technologies are selected, they should be ones the organization's IT team is comfortable supporting, and

they should integrate well with each other. The architecture principles (modularity, security, scalability) matter more than the

brand names of components. It's often beneficial to do a proof-of-concept with a chosen stack during the MVP phase to ensure

everything plays nicely together and to adjust if needed (for instance, if one component proves too complex, substitute it early).

With the technology stack in place, the enterprise will have the foundation to implement the unified MCP server architecture as

described. In the final section, concluded with strategic guidance and wrap up the key points of this white paper.

10. Conclusion

AI agents and multi-step automation are poised to transform enterprise operations – but without a unifying architecture, they

can introduce as many risks as benefits. A unified Multi-Channel Platform (MCP) server architecture provides the answer by

centralizing the management, orchestration, and governance of AI agents and tools. This white paper outlines how such a

platform delivers both technical and business value: it allows organizations to scale up AI-driven solutions efficiently while

maintaining full control over security, compliance, and quality.

The paper begins by articulating the need for centralization, noting the pitfalls of ad-hoc deployments (siloed agents,

inconsistent standards, security exposures) and showing how an MCP approach addresses them with standardization,

governance, and reuse[1]. The proposed architecture delineates a clear control plane – the "brain" coordinating AI workflows and

enforcing policies – and a data plane where the "muscle" of execution and integration happens, each populated with purpose-

built components like service registries, policy engines, context services, sandboxed runtimes, and protocol adapters connecting

to external systems.

Unified Multi-Channel AI Orchestration Platform Architecture

Page | 424

A detailed architectural deep-dive demonstrates how each component functions and contributes to the overall system. The

analysis reveals that an MCP is essentially "Kubernetes for AI agents", routing tasks to the right modules and tools and providing

the surrounding services (memory, observability, versioning) that complex AI systems require [2]. The inclusion of a rich security

model ensures that every agent action is authenticated, authorized, and tracked – preventing AI "wildfires" of the kind early

adopters feared [3]. Techniques like least-privilege access, network isolation, robust secrets management, and audit logging turn

the MCP into a trusted guardrail that tames AI's power with enterprise discipline [2] [4].

The discussion also addresses operational and organizational aspects. Governance workflows embed the MCP into the

enterprise's processes, requiring that AI agents go through proper lifecycle stages, approvals, and oversight. This ensures

alignment with business objectives and regulatory requirements, transforming AI from experimental projects into reliable

business services [1]. Integration strategies illustrated that the MCP doesn't sit in a vacuum – it actively interfaces with existing

platforms (Salesforce, SAP, ServiceNow, etc.), effectively becoming an integration hub for intelligent automation [1]. By

abstracting and standardizing those integrations, the platform accelerates new use cases and reduces duplicate integration work

across teams.

Key challenges like scalability and multi-tenancy were discussed, affirming that through careful architecture (e.g., stateless

scaling, tenant-aware design) and cloud-native tech, the platform can grow and serve multiple constituencies without

compromising isolation or performance [1] [4]. The phased rollout plan provided a pragmatic roadmap to implement these ideas

incrementally – start small, demonstrate value, then broaden and institutionalize, which is critical for gaining buy-in and ensuring

a smooth adoption.

The technology stack recommendations blend open-source flexibility with enterprise-grade reliability, suggesting tools and

frameworks to implement each piece of the puzzle. From Kubernetes and service mesh to identity providers and monitoring

stacks, the paper illustrates how organizations might assemble the MCP with modern, proven technologies that many

organizations already use or can adopt. The emphasis was on modularity and interoperability: each component (whether open-

source or commercial) should adhere to open standards and integrate cleanly, so the platform remains extensible and vendor-

agnostic.

In strategic terms, investing in a unified MCP server architecture is investing in future-proofing your AI deployments. It creates a

centralized capability that can adapt to new models, new tools, and new business requirements by configuration rather than

rebuilding. It establishes clear ownership and accountability – CIOs and CTOs get the "single pane of glass" visibility [2] and

control needed to trust AI agents with mission-critical roles. Moreover, it helps prevent the emergence of "shadow AI" by giving

business units an approved pathway to develop and deploy AI solutions under central governance [1]. This governance is not

about stifling innovation, but about channeling it safely.

As enterprises consider this journey, it's wise to remember that technology is only half the equation; the other half is people and

process. Success will depend on cross-functional collaboration – IT providing the platform, business units providing the use cases

and data, risk/compliance providing guardrails – all orchestrated like the agents themselves in a coherent workflow. Establishing

a Center of Excellence and clear guidelines at the outset will smooth the path. And users, whether employees or customers,

should be educated on how these AI agents function and how to interact with them (for trust and transparency reasons).

In conclusion, a unified MCP architecture offers a strategic foundation for enterprise AI. It enables organizations to harness the

productivity and insights of AI agents across all channels (from chatbots in Slack to automated processes in SAP) while staying in

command of what those agents can do [2]. It balances agility with governance, and innovation with security – essential traits for

any enterprise technology in the era of AI. By implementing the ideas and practices outlined in this paper, enterprise architects

and technology leaders can lead their organizations into the next wave of intelligent automation with confidence, knowing they

have both the accelerator and the brake needed to drive value responsibly.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

JCSTS 7(10): 400-425

Page | 425

References

[1] Akash T, (n.d) Enhancing enterprise AI with a centralized agent store: ZBrain’s solution, ZBrain. [Online]. Available:

https://zbrain.ai/enterprise-ai-agent-store/#importance-of-an-agent-store

[2] Conor S, (2025) Why MCP server security is critical for AI-driven enterprises, Sysdig, 2025. [Online]. Available:

https://www.sysdig.com/blog/why-mcp-server-security-is-critical-for-ai-driven-enterprises

[3] Peter S, (2025) AI’s Rewriting Automation & Itential’s MCP Server Is Your Guide, Itential, 2025. [Online]. Available:

https://www.itential.com/blog/company/ai-networking/ais-rewriting-automation-itentials-mcp-server-is-your-

guide/#:~:text=a%20decent%20root%20cause%20analysis,power%20loose%20on%20my%20network

[4] Styra, (n.d) Open Policy Agent. [Online]. Available: https://www.openpolicyagent.org/

[5] Tomer P, (2025) MCP for AI Agents: Enabling Modular, Scalable Agentic Systems, Unleash, 2025. [Online]. Available:

https://www.unleash.so/post/model-control-plane-mcp-for-ai-agents-enabling-modular-scalable-agentic-

systems#:~:text=At%20its%20core%2C%20a%20Model,the%20proper%20rules%20and%20context

https://zbrain.ai/enterprise-ai-agent-store/#importance-of-an-agent-store
https://www.sysdig.com/blog/why-mcp-server-security-is-critical-for-ai-driven-enterprises
https://www.itential.com/blog/company/ai-networking/ais-rewriting-automation-itentials-mcp-server-is-your-guide/#:~:text=a%20decent%20root%20cause%20analysis,power%20loose%20on%20my%20network
https://www.itential.com/blog/company/ai-networking/ais-rewriting-automation-itentials-mcp-server-is-your-guide/#:~:text=a%20decent%20root%20cause%20analysis,power%20loose%20on%20my%20network
https://www.openpolicyagent.org/
https://www.unleash.so/post/model-control-plane-mcp-for-ai-agents-enabling-modular-scalable-agentic-systems#:~:text=At%20its%20core%2C%20a%20Model,the%20proper%20rules%20and%20context
https://www.unleash.so/post/model-control-plane-mcp-for-ai-agents-enabling-modular-scalable-agentic-systems#:~:text=At%20its%20core%2C%20a%20Model,the%20proper%20rules%20and%20context

