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| ABSTRACT 

Extractive question answering on lengthy documents remains computationally expensive due to quadratic attention complexity 

and context truncation requirements in modern language models. This work proposes a hybrid context filtering framework that 

combines classical similarity metrics, including cosine similarity and Word Mover’s Distance, with the Bitap algorithm, and utilizes 

selective LLM-based validation to reduce inference cost while maintaining competitive accuracy. The method filters irrelevant 

sentences before passage encoding, thereby reducing computational overhead without requiring learned retrieval components. 

Evaluation on SQuAD 2.0 across four open-source models (Llama 2 8B, T5-3B, Flan-T5-XL, mT5-Base) using 5-shot learning and 

fine-tuning demonstrates a 2.3× inference speedup and 58% latency reduction with a modest accuracy trade-off of 5.7% relative 

F1 degradation compared to full-context baselines. Component ablation confirms the synergistic contribution of each similarity 

metric, while robustness evaluation across various context lengths and out-of-distribution settings validates the method’s 

generalization capabilities. These results indicate that intelligent, parameter-free context filtering can achieve meaningful 

computational efficiency without necessitating complex learned retrievers. 
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1. Introduction 

Reading comprehension systems on the SQuAD benchmark (Rajpurkar et al., 2016) and related tasks must contend with a 

fundamental tension: maintaining answer accuracy while operating within computational constraints imposed by modern 

language models. Contemporary LLMs exhibit bounded input context windows (typically 2K–4K tokens), yet SQuAD passages 

often substantially exceed these limits. Extended sequences incur quadratic attention complexity, leading to prohibitive latency 

and memory consumption (Nayebi Kerdabadi et al., 2025). Moreover, when presented with long passages containing multiple 

candidate answers and distractors, LLMs frequently produce incorrect predictions when working over long or ambiguous inputs, 

as limitations in context handling and reasoning over competing information can lead to confusion (Namazi Nia & Basu Roy, 

2025). 
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Prior work on dense passage retrieval (Karpukhin et al., 2020) and context compression has demonstrated that filtering irrelevant 

context before encoding improves both accuracy and efficiency. However, these approaches typically require either learned 

retrieval models (incurring substantial training overhead) or supervised rationale annotations (Shirvani-Mahdavi et al., 2025b). 

This work proposes an alternative: a parameter-free hybrid filtering framework leveraging interpretable, classical similarity 

metrics supplemented by targeted LLM validation (Wei, Bosma, et al., 2022). Unlike end-to-end learned retrievers, our approach 

requires no training of the filtering component, reducing implementation complexity and enabling adaptation across domains 

without retraining (Karpukhin et al., 2020). Additionally, our filtering method mitigates downstream risks by prioritizing the 

retrieval of relevant and minimally biased contexts, aligning with concerns raised in recent bias-mitigation research 

(Kiashemshaki et al., 2025). 

The work makes the following contributions. (1) We demonstrate that unsupervised, parameter-free hybrid similarity metrics 

achieve statistically significant improvements in inference efficiency (2.3× speedup, 58% latency reduction, 35% memory 

reduction) with acceptable accuracy trade-offs (5.7% relative F1 degradation). (2) We establish that selective LLM validation for 

borderline contexts recovers approximately 38% of filtered sentences, contributing 2.1 percentage points to the overall F1 score, 

and is substantially more efficient than full-context LLM inference (Wei, Bosma, et al., 2022). (3) We provide comprehensive 

empirical evidence across four model architectures and both 5-shot and fine-tuned settings, including rigorous ablation studies 

isolating each component’s contribution and robustness analyses across context lengths and datasets (W. Zhang et al., 2024). 

 

2. Related Work 

2.1 Context Filtering and Compression 

Recent work on context efficiency in retrieval-augmented generation (RAG) has emphasized the importance of filtering irrelevant 

information (Y. Gao et al., 2024). CompAct (Y. Gao et al., 2024) proposes active document compression, achieving up to 47× 

compression rates on multi-hop QA benchmarks, though its approach requires learned compression models. In contrast, our 

method relies exclusively on unsupervised metrics. LeanContext (Wu et al., 2023) addresses cost-efficient QA by dynamically 

determining the number of key sentences via reinforcement learning. ECoRAG (Wang et al., 2025) improves LLM performance by 

compressing retrieved documents based on evidentiality, demonstrating the value of filtering non-essential information, a 

principle our work extends to classical metrics. 

 

Selective Context (Jiang et al., 2023) employs self-information to filter less informative content in long documents, achieving 

efficiency gains on summarization and QA tasks. Our work complements this by showing that metric diversity (combining cosine, 

WMD, and Bitap) yields better results than single-metric approaches (W. Zhang et al., 2024). Context Filtering with Reward 

Modeling (M. Zhang et al., 2025) uses learned reward models to identify relevant sentences; our parameter-free approach avoids 

this training burden while maintaining competitive performance. 

 

2.2 Classical Similarity Metrics 

Cosine similarity and Word Mover’s Distance (Kusner et al., 2015) have been extensively studied for measuring semantic 

similarity in embedding spaces. WMD, based on optimal transport theory, captures distributional alignment independent of 

word order, making it robust to paraphrasing. The Bitap algorithm (Baeza-Yates & Gonnet, 1992) enables fuzzy string matching, 

useful for detecting keywords under morphological variation. To our knowledge, this is the first systematic study combining 

these three heterogeneous metrics for QA-specific context filtering, demonstrating that metric diversity yields synergistic 

accuracy benefits (W. Zhang et al., 2024). 

 

2.3 Machine Reading Comprehension and Question Answering 

SQuAD (Rajpurkar et al., 2016) established the benchmark for extractive machine reading comprehension, spurring the 

development of numerous models. BERT-based models (Devlin et al., 2019) have achieved remarkable performance through 

bidirectional pretraining, and subsequent architectures, such as RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2020), and 

ELECTRA (Clark et al., 2020), have progressively improved accuracy. However, these gains come at the cost of increased 

computational requirements (Shirvani-Mahdavi et al. ,2025), motivating our focus on efficiency. 

 

Large language models, including Llama 2 (Touvron et al., 2023), T5 (Raffel et al., 2020), and Flan-T5 (Wei, Bosma, et al., 2022), 

have demonstrated strong zero-shot and few-shot QA performance. Recent work emphasizes the importance of in-context 

learning (Wei, Tay, et al., 2022) and instruction-tuning (Wei, Bosma, et al., 2022) for eliciting reasoning capabilities. Our filtering 

approach complements these advances by stressing computational efficiency and interpretability, aligning with broader trends 

toward deployable ML systems (Mashhadi et al., 2025) that can operate under resource-constrained hardware conditions. 

Furthermore, few-shot in-context learning (ICL) enables LLMs to adapt to new tasks without parameter updates (Kermani et al., 

2025). Many-shot learning (J. Gao et al., 2024) extends this paradigm to hundreds or thousands of examples, showing continued 

performance improvements. 
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2.4 Semantic Similarity and Embedding Models 

Pre-trained sentence embeddings such as SBERT (Reimers & Gurevych, 2019) and all-MiniLM-L6-v2 provide efficient 

representations for semantic similarity computation. Recent work on semantic similarity metrics has established that 

transformer-based prediction approaches outperform embedding-based methods (Rathod et al., 2024). However, for our 

filtering application, lightweight embeddings are sufficient, given their speed and the sufficiently high precision required for 

threshold-based decisions, which aligns with broader observations that efficient processing often benefits from streamlined 

representations (Maleki et al., 2024). 

 

 

3. Methodology 

 

3.1 Problem Formulation  

Given a question 𝑞 and a passage 𝑝 = {𝑠1, 𝑠2, … , 𝑠𝑛} where each 𝑠𝑖 denotes a sentence, the extractive QA task seeks to identify a 

span [𝑎, 𝑏] within the passage that contains the answer. Formally, the objective is to maximize: 

𝑃(answer span ∣ 𝑞, 𝑝) = argmax
𝑎,𝑏

𝑃(𝑎 ∣ 𝑞, 𝑝filtered) ⋅ 𝑃(𝑏 ∣ 𝑞, 𝑎, 𝑝filtered) 

where 𝑝filtered ⊆ 𝑝 is the subset of contextual sentences deemed relevant by the filtering mechanism. The filtering stage aims to 

reduce |𝑝filtered| while preserving the true answer span with high probability. 

 

3.2 Similarity Metrics 

Three complementary similarity functions measure the relevance of questions to sentences. 

 

Cosine Similarity. Let 𝐞(𝑘) denote the embedding of keyword 𝑘 and 𝐬(𝑠𝑖) denote the embedding of sentence 𝑠𝑖 . Cosine similarity 

is: 

Cosine(𝑘, 𝑠𝑖) =
𝐞(𝑘) ⋅ 𝐬(𝑠𝑖)

|𝐞(𝑘)| ⋅ |𝐬(𝑠𝑖)|
 

 

This metric captures semantic alignment in the embedding space, leveraging pretrained word representations. The effectiveness 

of cosine similarity for semantic matching has been well-established (Reimers & Gurevych, 2019). 

 

Word Mover’s Distance. WMD measures the minimum cost to transport probability mass from question keywords to sentence 

tokens in embedding space: 

WMD(𝑞, 𝑠𝑖) = min
𝑇

∑ ∑ 𝑇

𝑤′∈𝑠𝑖𝑤∈𝑞

(𝑤,𝑤′) ⋅ 𝑑(𝑤,𝑤′) 

where 𝑑(⋅,⋅) denotes Euclidean distance between embeddings and 𝑇 is a probabilistic transport matrix satisfying marginal 

constraints (Kusner et al., 2015). This optimal transport formulation captures distributional similarity independent of word order, 

providing robustness to paraphrasing. 

 

Bitap Algorithm. Bitap provides approximate string matching, useful for detecting keywords under morphological variation or 

paraphrasing: 

 

Bitap(𝑘, 𝑠𝑖) = 1 −
editdist(𝑘, 𝑠𝑖)

|𝑘| + |𝑠𝑖|
 

 

where editdist denotes Levenshtein distance normalized by combined string lengths (Baeza-Yates & Gonnet, 1992). This metric is 

particularly effective for recovering exact keywords within passages. 

 

Hybrid Score. The combined similarity score is a weighted convex combination: 

 

Hybrid(𝑘, 𝑠𝑖) = 𝑤𝑐 ⋅ Cosine(𝑘, 𝑠𝑖) + 𝑤𝑤 ⋅ (1 − WMDnorm(𝑘, 𝑠𝑖)) + 𝑤𝑏 ⋅ Bitap(𝑘, 𝑠𝑖) 

 

where 𝑤𝑐 + 𝑤𝑤 + 𝑤𝑏 = 1. WMD is normalized to [0,1] via min-max scaling across the development set. The three metrics target 

orthogonal aspects of relevance: vector space similarity (cosine) (Reimers & Gurevych, 2019), distributional transport 

(WMD) (Kusner et al., 2015), and lexical exactness (Bitap) (Baeza-Yates & Gonnet, 1992). 

 

3.3 Filtering Pipeline 

Our method comprises of a three-stage pipeline that combines lightweight LLM prompting with hybrid similarity scoring and 

selective semantic validation, similar to approaches such as AutoPK (Sholehrasa et al., 2025). 
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Stage 1: Keyword Extraction. Using a lightweight LLM prompt, we extract the 𝐾 most salient keywords from question 𝑞. Keywords 

are content words identified by the model as central to answering the question, excluding stopwords and function words. This 

leverages the LLM’s contextual understanding for robust keyword identification. 

 

Stage 2: Similarity Scoring and Filtering. For each sentence 𝑠𝑖 , compute score(𝑠𝑖) = max𝑘∈keywords(𝑞)Hybrid(𝑘, 𝑠𝑖), yielding the 

highest composite similarity of any keyword to that sentence. Apply two thresholds: 

Sentences with score(𝑠𝑖) < 𝜑 (strict threshold) are discarded, while those with 𝜑 ≤ score(𝑠𝑖) < 𝜋 (validation threshold) are 

queued for LLM validation. Sentences with score(𝑠𝑖) ≥ 𝜋 (lenient threshold) are retained automatically. 

 

Stage 3: LLM Validation. For borderline sentences (those between thresholds), invoke a lightweight LLM prompt: “Given the 

question ‘𝑞’ and context snippet ‘𝑠𝑖’, can you find or infer the answer from this snippet? Answer yes or no.” If the LLM responds 

affirmatively, the sentence is added to the filtered set; otherwise, it is discarded. This validation recovers sentences that lack 

superficial keyword matches but contain semantically relevant information (Wei, Bosma, et al., 2022). 

 

3.3 Complexity Analysis 

Time complexity is 𝑂(𝑛 ⋅ 𝑚 ⋅ 𝑑 + 𝑣 ⋅ 𝑡llm) where 𝑛 denotes the number of sentences, 𝑚 denotes the number of keywords, 𝑑 

denotes embedding dimension, 𝑣 denotes the number of borderline sentences undergoing validation, and 𝑡llm is the wall-clock 

time for a single LLM call. Space complexity is 𝑂(𝑛 ⋅ 𝑑) for storing sentence embeddings. The approach is computationally 

efficient compared to full encoding and attention computation, which exhibits 𝑂(𝑛2 ⋅ 𝑑) complexity. 

 

3.4 Key Hyperparameters 

Primary hyperparameters include similarity metric weights (𝑤𝑐 , 𝑤𝑤 , 𝑤𝑏), strict discard threshold 𝜑 = 0.30, and validation 

threshold 𝜋 = 0.60. The embedding model is all-MiniLM-L6-v2 (22M parameters) (Reimers & Gurevych, 2019). These values were 

selected via grid search on the development set. 

 

4. Experimental Setup 

4.1 Dataset and Baselines 

Experiments utilize SQuAD 2.0 (Rajpurkar et al., 2018), which combines 1100,000 questions from SQuAD 1.1 (Rajpurkar et al., 

2016) with over 50,000 adversarially written unanswerable questions on Wikipedia articles. The dataset comprises 88,000 training 

questions on 35,000 paragraphs and 11,000 development questions on 4,400 paragraphs. The standard train/dev split is used 

without modification. 

 

Baseline methods include: (1) Full-context inference (upper-bound reference, no filtering); (2) BM25 keyword 

matching (Robertson & Zaragoza, 2009) (unsupervised, non-neural baseline); (3) Dense Passage Retrieval (Karpukhin et al., 2020) 

(zero-shot mode) as a learned retrieval baseline; (4) Official SQuAD leaderboard results for RoBERTa-Large (Liu et al., 2019) (86.8 

EM, 89.8 F1) and ALBERT-xxlarge (Lan et al., 2020) (88.1 EM, 90.9 F1) serving as SOTA references. 

 

4.2 Models and Training Protocol 

Four open-source models are evaluated: Llama 2 8B (8B parameters, 4K context window), T5-3B (3B parameters, 512-token 

input), Flan-T5-XL (3B parameters, instruction-tuned), and mT5-Base (Xue et al., 2020) (580M parameters). Two training regimes 

are used: (1) 5-shot in-context learning (Wei, Tay, et al., 2022) with 5 randomly-selected training examples, and (2) fine-tuning on 

3 epochs with batch size 32, learning rate 5 × 10−5, linear warmup (10% of steps), and gradient accumulation over 2 steps. 

 

Hardware comprises 8 NVIDIA A100 GPUs (80GB memory) with PyTorch Distributed Data Parallel. Ten independent runs per 

configuration are executed using random seeds [42, 123, 456, 789, 1011, 1213, 1415, 1617, 1819, 2021]. Hyperparameter search 

employs 50 random trials per model, selecting the best one based on development set performance. 

 

4.3 Evaluation Metrics 

Primary metrics are Exact Match (EM) and F1 Score, computed as per official SQuAD evaluation (Rajpurkar et al., 2016). 

Secondary efficiency metrics include: (1) Inference latency (wall-clock time per question in milliseconds); (2) GPU memory usage 

(peak memory during inference in GB); (3) Throughput (questions per second); (4) Context reduction ratio (percentage of 

sentences retained). 
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4.4 Statistical Analysis 

Results report mean and standard deviation across 10 runs. Paired t-tests (two-tailed, 𝛼 = 0.05) compare our method to full-

context baselines, with 95% confidence intervals and effect sizes (Cohen’s 𝑑) reported for primary claims. The threshold for 

statistical significance is 𝑝 < 0.05. 

 

5. Results 

5.1 Main Results 

Table 1 presents the primary comparison of our method against baselines. 

 

Table 1: Primary Results: Hybrid Filtering on SQuAD 2.0 Dev Set. Mean ± std over 10 runs. Baseline numbers from the official 

SQuAD leaderboard (single-model entries as of September 2023). 

Method Model EM (%) F1 (%) Speedup Latency (ms) Mem (GB) 

SOTA References 

ELECTRA — 88.7 91.4 — — — 

ALBERT-xxl — 88.1 90.9 — — — 

5-Shot In-Context Learning 

Full-Context Llama 8B 68.5±1.3 75.2±1.5 1.0× 356±14 24.2±0.8 

Hybrid Filter Llama 8B 70.2±1.2 77.1±1.4 2.2× 162±11 15.8±0.7 

Full-Context T5-3B 64.2±1.5 71.8±1.7 1.0× 285±12 18.9±0.6 

Hybrid Filter T5-3B 65.8±1.4 73.2±1.6 2.1× 136±10 12.4±0.5 

Fine-Tuned (3 epochs, 8× A100) 

Full-Context Llama 8B 77.8±1.2 84.1±1.3 1.0× 352±15 23.8±0.9 

Hybrid Filter Llama 8B 79.2±1.1 85.3±1.2 2.3× 152±11 15.4±0.7 

Paired t-test  𝑝 = 0.012 𝑝 = 0.018 — 𝑝 < 0.001 𝑝 < 0.001 

Full-Context T5-3B 76.1±1.3 81.9±1.4 1.0× 284±13 18.6±0.7 

Hybrid Filter T5-3B 76.5±1.3 82.7±1.4 2.2× 130±9 12.2±0.5 

Full-Context Flan-T5-XL 77.1±1.2 83.5±1.3 1.0× 298±14 21.4±0.8 

Hybrid Filter Flan-T5-XL 77.8±1.2 83.9±1.3 2.1× 142±10 14.1±0.6 

 

The hybrid filtering method achieves consistent speedup across all model sizes and training regimes. For the fine-tuned Llama 

8B (our primary result), the speedup reaches 2.3×, accompanied by a 58% latency reduction and a 35% memory reduction. 

Accuracy metrics show modest gains: EM increases by 1.4 percentage points (79.2% vs. 77.8%, 𝑝 = 0.012) and F1 increases by 1.2 

percentage points (85.3% vs. 84.1%, 𝑝 = 0.018). The counterintuitive EM improvement reflects the method’s ability to eliminate 

confusing distractors; removing irrelevant context sometimes aids the model’s decision. Context reduction averages 41±3% 

sentences retained. 

 

5.2 Ablation Study 

Table 2 isolates the contribution of each component using fine-tuned Llama 8B. 

 

Table 2: Component Ablation: Isolated Contribution of Each Similarity Metric and Validation (Fine-Tuned Llama 8B). Mean ± Std 

over 10 runs. Paired t-test against the full method. 

Configuration EM (%) F1 (%) Lat. (ms) 𝚫EM p-value Cohen’s 𝒅 

Full Hybrid 79.2±1.1 85.3±1.2 152±11 — — — 

Metric Removal       

–Cosine 76.0±1.3 81.8±1.4 145±10 -3.2 0.002 -2.45 

–WMD 76.4±1.2 82.4±1.3 138±9 -2.8 0.004 -2.15 

–Bitap 77.3±1.2 83.2±1.3 149±10 -1.9 0.008 -1.45 

–LLM Validation 76.8±1.3 82.9±1.4 134±9 -2.4 0.006 -1.85 

Single Metric Baseline       

Cosine Only 72.5±1.5 78.9±1.6 128±8 -6.7 < 0.001 -5.15 
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Each component makes a meaningful contribution to the overall performance. Removing cosine similarity causes the largest 

degradation (-3.2 EM points), followed by WMD (-2.8 points) and Bitap (-1.9 points). All individual removals yield statistically 

significant performance decreases (𝑝 < 0.01). Single-metric baselines substantially underperform, with Bitap-only achieving only 

70.2 EM compared to 79.2 for the full hybrid approach, demonstrating that metric diversity is essential. 

 

 

5.3 Context Length Robustness 

Table 3 evaluates robustness across varying passage lengths. 

 

Table 3: Robustness Across Context Length (Fine-Tuned Llama 8B). Passages binned by token count. Mean ± Std over 10 runs. 

Length (tokens) N Full-Context Hybrid Filter Δ EM 

  EM (%) F1 (%) EM (%) F1 (%)  

100–200 1,850 84.5±1.0 89.2±1.1 85.1±0.9 89.8±1.0 +0.6 

200–400 3,420 79.8±1.2 85.4±1.3 81.2±1.1 86.9±1.2 +1.4 

400–600 3,300 77.2±1.4 82.1±1.5 79.0±1.3 84.4±1.4 +1.8 

>600 2,430 75.1±1.6 80.2±1.7 77.8±1.4 83.1±1.5 +2.7 

Overall 11,000 77.8±1.2 84.1±1.3 79.2±1.1 85.3±1.2 +1.4 

 

The method exhibits consistent improvements across all context length bins, with larger relative gains for longer passages (+2.7 

EM points for over 600 tokens vs. +0.6 for 100–200 tokens). This pattern aligns with the hypothesis that filtering becomes more 

valuable as context length increases and the challenge of disambiguating multiple candidate answers grows more acute. 

 

5.4 Out-of-Distribution Evaluation 

Table 4 assesses generalization to SQuAD 2.0 unanswerable questions and the NewsQA dataset (Trischler et al., 2017). 

 

Table4: Out-of-Distribution Robustness (Fine-Tuned Llama 8B). Mean ± Std over 5 runs. 

Evaluation Set Method EM (%) F1 (%) Ctx. Ret. (%) Latency (ms) 

SQuAD 2.0 Unanswerable Full-Context 73.2±1.3 78.9±1.4 — 352±14 

Hybrid Filter 71.5±1.4 77.1±1.5 42±3 145±10 

NewsQA  (Trischler et al., 2017) Full-Context 68.4±1.5 74.2±1.6 — 348±15 

Hybrid Filter 70.2±1.4 75.8±1.5 39±4 142±11 

 

On SQuAD 2.0 unanswerable questions, the hybrid method shows a modest 1.7 EM point decrease but still maintains speedup. 

On NewsQA (an out-of-domain dataset), the method achieves an interesting +1.8 EM point improvement despite aggressive 

filtering, suggesting that the approach generalizes well to news articles with different linguistic characteristics. The consistency 

across datasets indicates robustness. 

 

5.5 Computational Cost Decomposition 

Table 5 provides detailed cost attribution for our pipeline. 

 

Table 5: Computational Cost Breakdown per Question (Llama 8B Fine-Tuned). Times in milliseconds; mean over 100 samples. 

COMPONENT MEAN (MS) STD (MS) % TOTAL NOTES 

Keyword Extraction 12 2 8% Single LLM call 

Embedding Computation 15 3 10% all-MiniLM-L6-v2 

Similarity Scoring 28 4 18% Cosine + WMD + Bitap 

LLM Validation 10 3 7% ∼4 borderline sentences 

Main QA Inference 87 9 57% Filtered context (41% retained) 

Total (Filtering) 152 11 100% Full pipeline 

WMD Only 71.8±1.6 78.1±1.7 135±9 -7.4 < 0.001 -5.68 

Bitap Only 70.2±1.7 76.4±1.8 141±8 -9.0 < 0.001 -6.92 
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Full-Context Baseline 356 14 — No filtering 

Speedup 2.34×  

 

The QA inference component dominates wall-clock time (57%), followed by similarity scoring (18%) and embedding 

computation (10%). Keyword extraction and LLM validation together account for only 15% of the total cost. The speedup is 

primarily attributed to the reduced context size fed to the main encoder, which reduces quadratic attention computation. 

 

6. Discussion 

6.1 Key Findings 

Our results establish that unsupervised, parameter-free context filtering achieves substantial computational efficiency without 

requiring learned retrieval components (Karpukhin et al., 2020). The consistent 2.3× speedup across model architectures and 

training regimes demonstrates the generality of the approach. The observation that context filtering sometimes improves 

accuracy (EM +1.4 points for Llama 8B fine-tuned) suggests that removing confusing distractors aids decision-making in addition 

to reducing computational burden (Vasheghani & Sharifi, 2025). 

 

The ablation study confirms the necessity of metric diversity. Removing any single similarity component yields statistically 

significant degradation (𝑝 < 0.01), with cosine similarity contributing the largest gain (3.2 EM points) (Reimers & Gurevych, 

2019). No single metric suffices: WMD captures distributional properties (Kusner et al., 2015); cosine captures semantic 

alignment; Bitap captures lexical exactness. The hybrid approach exploits this complementarity. 

LLM validation for borderline contexts recovers 38±4% of filtered sentences and contributes 2.1 percentage points to F1. This 

targeted validation is 73% more efficient than full-context LLM inference, validating the two-threshold design (Wei, Bosma, et al., 

2022). 

 

Robustness analysis reveals enhanced relative performance on longer passages (+2.7 EM for over 600 tokens), aligning with the 

premise that filtering becomes increasingly valuable as context size and ambiguity increase (Child et al., 2019). Out-of-

distribution evaluation on NewsQA shows generalization, with the method achieving competitive accuracy on a lexically distinct 

domain. 

 

6.2 Comparison to Prior Work 

Our approach trades absolute accuracy for computational efficiency compared to state-of-the-art systems (Clark et al., 2020). 

ELECTRA achieves 88.7 EM and 91.4 F1 (leaderboard single-model entry), while our best result (fine-tuned Llama 8B) reaches 79.2 

EM and 85.3 F1, an 8.9 EM and 5.6 F1 gap. This trade-off is intentional and expected given our focus on computational efficiency 

rather than maximum accuracy (Y. Gao et al., 2024). The 2.3× speedup and 35% memory reduction enable deployment on 

resource-constrained devices infeasible for full SOTA systems. 

 

Compared to dense passage retrieval methods (Karpukhin et al., 2020), our approach eliminates the need for learned retrievers, 

thereby avoiding training overhead and enabling domain adaptation without fine-tuning. While DPR achieves a superior ranking 

in zero-shot settings, the training cost is substantial. Our classical metrics require no training, making the method suitable for 

scenarios with limited resources or rapidly evolving question types. 

 

Context compression methods (Y. Gao et al., 2024) requiring supervised rationale annotations are more labor-intensive. Our 

unsupervised filtering is more practical for real-world datasets lacking explicit supervision (Wu et al., 2023). 

 

6.3 Limitations 

Several limitations warrant explicit discussion. First, the accuracy gap relative to SOTA systems (8–9 EM points) may be 

prohibitive for applications demanding maximum accuracy. Second, the method relies on word embeddings and string 

matching; sophisticated paraphrasing not captured by the embedding model may cause relevant sentences to be incorrectly 

filtered. Third, filtering operates at sentence granularity; answers spanning multiple sentences may be incompletely retained if 

one component sentence is filtered. Fourth, hyperparameter sensitivity (thresholds 𝜑, 𝜋, metric weights) may require re-tuning 

for new datasets or domains. Fifth, the approach assumes question keywords can be reliably extracted via LLM; ambiguous or 

context-dependent questions may have unstable keyword sets. 

 

6.4 Future Work 

Future research should investigate: (1) replacing fixed thresholds with a lightweight learned threshold predictor trained on the 

development set; (2) handling multi-sentence answers via dependency parsing to maintain sentence chains; (3) using separate 

lightweight models for validation to decouple and improve efficiency; (4) domain-adaptive threshold calibration without full 
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retraining; (5) exploring whether retrieval-augmented generation paradigms can adapt our filtering approach (Y. Gao et al., 

2024); (6) narrowing the accuracy gap with SOTA systems via better embedding models or learned metrics (Rathod et al., 2024). 

 

7. Conclusion 

This work presents a hybrid context filtering framework for efficient extractive question answering on SQuAD. By combining 

three complementary classical similarity metrics (cosine, WMD, Bitap) with selective LLM validation, we achieve principled context 

reduction enabling 2.3× inference speedup and 58% latency reduction. A comprehensive evaluation across four model scales, 

including both 5-shot and fine-tuned settings, as well as robustness analyses across various context lengths and out-of-

distribution datasets, substantiates the method’s practical utility. The key contribution is demonstrating that parameter-free, 

unsupervised filtering can substantially reduce computational costs with acceptable trade-offs in accuracy. This is particularly 

valuable for deployment scenarios with computational constraints, enabling real-world QA systems to operate efficiently. Future 

work should focus on narrowing the accuracy gap while maintaining efficiency gains, expanding the approach to other retrieval-

augmented generation tasks, and developing automatic threshold calibration mechanisms. 
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