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| ABSTRACT

Extractive question answering on lengthy documents remains computationally expensive due to quadratic attention complexity
and context truncation requirements in modern language models. This work proposes a hybrid context filtering framework that
combines classical similarity metrics, including cosine similarity and Word Mover's Distance, with the Bitap algorithm, and utilizes
selective LLM-based validation to reduce inference cost while maintaining competitive accuracy. The method filters irrelevant
sentences before passage encoding, thereby reducing computational overhead without requiring learned retrieval components.
Evaluation on SQUAD 2.0 across four open-source models (Llama 2 8B, T5-3B, Flan-T5-XL, mT5-Base) using 5-shot learning and
fine-tuning demonstrates a 2.3x inference speedup and 58% latency reduction with a modest accuracy trade-off of 5.7% relative
F1 degradation compared to full-context baselines. Component ablation confirms the synergistic contribution of each similarity
metric, while robustness evaluation across various context lengths and out-of-distribution settings validates the method's
generalization capabilities. These results indicate that intelligent, parameter-free context filtering can achieve meaningful
computational efficiency without necessitating complex learned retrievers.
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1. Introduction

Reading comprehension systems on the SQUAD benchmark (Rajpurkar et al., 2016) and related tasks must contend with a
fundamental tension: maintaining answer accuracy while operating within computational constraints imposed by modern
language models. Contemporary LLMs exhibit bounded input context windows (typically 2K—4K tokens), yet SQUAD passages
often substantially exceed these limits. Extended sequences incur quadratic attention complexity, leading to prohibitive latency
and memory consumption (Nayebi Kerdabadi et al., 2025). Moreover, when presented with long passages containing multiple
candidate answers and distractors, LLMs frequently produce incorrect predictions when working over long or ambiguous inputs,
as limitations in context handling and reasoning over competing information can lead to confusion (Namazi Nia & Basu Roy,
2025).
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Prior work on dense passage retrieval (Karpukhin et al., 2020) and context compression has demonstrated that filtering irrelevant
context before encoding improves both accuracy and efficiency. However, these approaches typically require either learned
retrieval models (incurring substantial training overhead) or supervised rationale annotations (Shirvani-Mahdavi et al., 2025b).
This work proposes an alternative: a parameter-free hybrid filtering framework leveraging interpretable, classical similarity
metrics supplemented by targeted LLM validation (Wei, Bosma, et al,, 2022). Unlike end-to-end learned retrievers, our approach
requires no training of the filtering component, reducing implementation complexity and enabling adaptation across domains
without retraining (Karpukhin et al.,, 2020). Additionally, our filtering method mitigates downstream risks by prioritizing the
retrieval of relevant and minimally biased contexts, aligning with concerns raised in recent bias-mitigation research
(Kiashemshaki et al., 2025).

The work makes the following contributions. (1) We demonstrate that unsupervised, parameter-free hybrid similarity metrics
achieve statistically significant improvements in inference efficiency (2.3x speedup, 58% latency reduction, 35% memory
reduction) with acceptable accuracy trade-offs (5.7% relative F1 degradation). (2) We establish that selective LLM validation for
borderline contexts recovers approximately 38% of filtered sentences, contributing 2.1 percentage points to the overall F1 score,
and is substantially more efficient than full-context LLM inference (Wei, Bosma, et al., 2022). (3) We provide comprehensive
empirical evidence across four model architectures and both 5-shot and fine-tuned settings, including rigorous ablation studies
isolating each component's contribution and robustness analyses across context lengths and datasets (W. Zhang et al., 2024).

2. Related Work

2.1 Context Filtering and Compression

Recent work on context efficiency in retrieval-augmented generation (RAG) has emphasized the importance of filtering irrelevant
information (Y. Gao et al., 2024). CompAct (Y. Gao et al.,, 2024) proposes active document compression, achieving up to 47x
compression rates on multi-hop QA benchmarks, though its approach requires learned compression models. In contrast, our
method relies exclusively on unsupervised metrics. LeanContext (Wu et al., 2023) addresses cost-efficient QA by dynamically
determining the number of key sentences via reinforcement learning. ECORAG (Wang et al., 2025) improves LLM performance by
compressing retrieved documents based on evidentiality, demonstrating the value of filtering non-essential information, a
principle our work extends to classical metrics.

Selective Context (Jiang et al., 2023) employs self-information to filter less informative content in long documents, achieving
efficiency gains on summarization and QA tasks. Our work complements this by showing that metric diversity (combining cosine,
WMD, and Bitap) yields better results than single-metric approaches (W. Zhang et al., 2024). Context Filtering with Reward
Modeling (M. Zhang et al.,, 2025) uses learned reward models to identify relevant sentences; our parameter-free approach avoids
this training burden while maintaining competitive performance.

2.2 Classical Similarity Metrics

Cosine similarity and Word Mover's Distance (Kusner et al., 2015) have been extensively studied for measuring semantic
similarity in embedding spaces. WMD, based on optimal transport theory, captures distributional alignment independent of
word order, making it robust to paraphrasing. The Bitap algorithm (Baeza-Yates & Gonnet, 1992) enables fuzzy string matching,
useful for detecting keywords under morphological variation. To our knowledge, this is the first systematic study combining
these three heterogeneous metrics for QA-specific context filtering, demonstrating that metric diversity yields synergistic
accuracy benefits (W. Zhang et al., 2024).

2.3 Machine Reading Comprehension and Question Answering

SQUAD (Rajpurkar et al., 2016) established the benchmark for extractive machine reading comprehension, spurring the
development of numerous models. BERT-based models (Devlin et al.,, 2019) have achieved remarkable performance through
bidirectional pretraining, and subsequent architectures, such as RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2020), and
ELECTRA (Clark et al., 2020), have progressively improved accuracy. However, these gains come at the cost of increased
computational requirements (Shirvani-Mahdavi et al. ,2025), motivating our focus on efficiency.

Large language models, including Llama 2 (Touvron et al., 2023), T5 (Raffel et al., 2020), and Flan-T5 (Wei, Bosma, et al., 2022),
have demonstrated strong zero-shot and few-shot QA performance. Recent work emphasizes the importance of in-context
learning (Wei, Tay, et al.,, 2022) and instruction-tuning (Wei, Bosma, et al., 2022) for eliciting reasoning capabilities. Our filtering
approach complements these advances by stressing computational efficiency and interpretability, aligning with broader trends
toward deployable ML systems (Mashhadi et al., 2025) that can operate under resource-constrained hardware conditions.
Furthermore, few-shot in-context learning (ICL) enables LLMs to adapt to new tasks without parameter updates (Kermani et al.,
2025). Many-shot learning (J. Gao et al., 2024) extends this paradigm to hundreds or thousands of examples, showing continued
performance improvements.
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2.4 Semantic Similarity and Embedding Models

Pre-trained sentence embeddings such as SBERT (Reimers & Gurevych, 2019) and all-MiniLM-L6-v2 provide efficient
representations for semantic similarity computation. Recent work on semantic similarity metrics has established that
transformer-based prediction approaches outperform embedding-based methods (Rathod et al., 2024). However, for our
filtering application, lightweight embeddings are sufficient, given their speed and the sufficiently high precision required for
threshold-based decisions, which aligns with broader observations that efficient processing often benefits from streamlined
representations (Maleki et al., 2024).

3. Methodology

3.1 Problem Formulation
Given a question g and a passage p = {54, S, ..., Sp.} Where each s; denotes a sentence, the extractive QA task seeks to identify a
span [a, b] within the passage that contains the answer. Formally, the objective is to maximize:

P(answer span | ¢,p) = argmaxP(a | q, Pfitered) - P(D | 4, @, Piitered)
where pritered € P is the subset of contextual sentences deemed relevant by the filtering mechanism. The filtering stage aims to
reduce |pitered| While preserving the true answer span with high probability.

3.2 Similarity Metrics
Three complementary similarity functions measure the relevance of questions to sentences.

Cosine Similarity. Let e(k) denote the embedding of keyword k and s(s;) denote the embedding of sentence s;. Cosine similarity
is:
. e(k) - s(si)
Cosine(k,s;)) = ——————
(050 = Teol - TsGso]
This metric captures semantic alignment in the embedding space, leveraging pretrained word representations. The effectiveness
of cosine similarity for semantic matching has been well-established (Reimers & Gurevych, 2019).

Word Mover’s Distance. WMD measures the minimum cost to transport probability mass from question keywords to sentence
tokens in embedding space:
WMD(q, s;) = mTin Z z T (w,w'")-d(w,w')
weq w'es;
where d(:,-) denotes Euclidean distance between embeddings and T is a probabilistic transport matrix satisfying marginal
constraints (Kusner et al., 2015). This optimal transport formulation captures distributional similarity independent of word order,
providing robustness to paraphrasing.

Bitap Algorithm. Bitap provides approximate string matching, useful for detecting keywords under morphological variation or
paraphrasing:

Bitap(k, s,) = 1 editdist(k, s;)

itap(k,s;)) =1 —————

Pros el + si

where editdist denotes Levenshtein distance normalized by combined string lengths (Baeza-Yates & Gonnet, 1992). This metric is
particularly effective for recovering exact keywords within passages.

Hybrid Score. The combined similarity score is a weighted convex combination:
Hybrid(k, s;) = w, - Cosine(k, s;) + w, - (1 = WMD, o;m (k, s;)) + wy, - Bitap(k, s;)

where w, + w,, + w;, = 1. WMD is normalized to [0,1] via min-max scaling across the development set. The three metrics target
orthogonal aspects of relevance: vector space similarity (cosine) (Reimers & Gurevych, 2019), distributional transport
(WMD) (Kusner et al,, 2015), and lexical exactness (Bitap) (Baeza-Yates & Gonnet, 1992).

3.3 Filtering Pipeline
Our method comprises of a three-stage pipeline that combines lightweight LLM prompting with hybrid similarity scoring and
selective semantic validation, similar to approaches such as AutoPK (Sholehrasa et al., 2025).
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Stage 1: Keyword Extraction. Using a lightweight LLM prompt, we extract the K most salient keywords from question g. Keywords
are content words identified by the model as central to answering the question, excluding stopwords and function words. This
leverages the LLM'’s contextual understanding for robust keyword identification.

Stage 2: Similarity Scoring and Filtering. For each sentence s;, compute score(s;) = maXyekeywords(q) HyPrid(k, s;), yielding the
highest composite similarity of any keyword to that sentence. Apply two thresholds:

Sentences with score(s;) < ¢ (strict threshold) are discarded, while those with ¢ < score(s;) < m (validation threshold) are
queued for LLM validation. Sentences with score(s;) = m (lenient threshold) are retained automatically.

Stage 3: LLM Validation. For borderline sentences (those between thresholds), invoke a lightweight LLM prompt: “Given the
question ‘g’ and context snippet 's;’, can you find or infer the answer from this snippet? Answer yes or no.” If the LLM responds
affirmatively, the sentence is added to the filtered set; otherwise, it is discarded. This validation recovers sentences that lack
superficial keyword matches but contain semantically relevant information (Wei, Bosma, et al., 2022).

3.3 Complexity Analysis

Time complexity is O(n-m - d + v - t),,) where n denotes the number of sentences, m denotes the number of keywords, d
denotes embedding dimension, v denotes the number of borderline sentences undergoing validation, and ¢, is the wall-clock
time for a single LLM call. Space complexity is O(n - d) for storing sentence embeddings. The approach is computationally
efficient compared to full encoding and attention computation, which exhibits 0(n? - d) complexity.

3.4 Key Hyperparameters

Primary hyperparameters include similarity metric weights (w,, w,,, wy,), strict discard threshold ¢ = 0.30, and validation
threshold © = 0.60. The embedding model is all-MiniLM-L6-v2 (22M parameters) (Reimers & Gurevych, 2019). These values were
selected via grid search on the development set.

4. Experimental Setup

4.1 Dataset and Baselines

Experiments utilize SQUAD 2.0 (Rajpurkar et al., 2018), which combines 1100,000 questions from SQUAD 1.1 (Rajpurkar et al.,
2016) with over 50,000 adversarially written unanswerable questions on Wikipedia articles. The dataset comprises 88,000 training
guestions on 35,000 paragraphs and 11,000 development questions on 4,400 paragraphs. The standard train/dev split is used
without modification.

Baseline methods include: (1) Full-context inference (upper-bound reference, no filtering); (2) BM25 keyword

matching (Robertson & Zaragoza, 2009) (unsupervised, non-neural baseline); (3) Dense Passage Retrieval (Karpukhin et al., 2020)
(zero-shot mode) as a learned retrieval baseline; (4) Official SQUAD leaderboard results for RoBERTa-Large (Liu et al., 2019) (86.8
EM, 89.8 F1) and ALBERT-xxlarge (Lan et al., 2020) (88.1 EM, 90.9 F1) serving as SOTA references.

4.2 Models and Training Protocol

Four open-source models are evaluated: Llama 2 8B (8B parameters, 4K context window), T5-3B (3B parameters, 512-token
input), Flan-T5-XL (3B parameters, instruction-tuned), and mT5-Base (Xue et al., 2020) (580M parameters). Two training regimes
are used: (1) 5-shot in-context learning (Wei, Tay, et al., 2022) with 5 randomly-selected training examples, and (2) fine-tuning on
3 epochs with batch size 32, learning rate 5 x 1075, linear warmup (10% of steps), and gradient accumulation over 2 steps.

Hardware comprises 8 NVIDIA A100 GPUs (80GB memory) with PyTorch Distributed Data Parallel. Ten independent runs per
configuration are executed using random seeds [42, 123, 456, 789, 1011, 1213, 1415, 1617, 1819, 2021]. Hyperparameter search
employs 50 random trials per model, selecting the best one based on development set performance.

4.3 Evaluation Metrics

Primary metrics are Exact Match (EM) and F1 Score, computed as per official SQUAD evaluation (Rajpurkar et al., 2016).
Secondary efficiency metrics include: (1) Inference latency (wall-clock time per question in milliseconds); (2) GPU memory usage
(peak memory during inference in GB); (3) Throughput (questions per second); (4) Context reduction ratio (percentage of
sentences retained).
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4.4 Statistical Analysis

Results report mean and standard deviation across 10 runs. Paired t-tests (two-tailed, @ = 0.05) compare our method to full-
context baselines, with 95% confidence intervals and effect sizes (Cohen'’s d) reported for primary claims. The threshold for
statistical significance is p < 0.05.

5. Results
5.1 Main Results

Table 1 presents the primary comparison of our method against baselines.

Table 1: Primary Results: Hybrid Filtering on SQUAD 2.0 Dev Set. Mean + std over 10 runs. Baseline numbers from the official

SQUAD leaderboard (single-model entries as of September 2023).

Method Model EM (%) F1 (%) Speedup Latency (ms) Mem (GB)
SOTA References

ELECTRA — 88.7 91.4 — — —
ALBERT-xxl — 88.1 90.9 — — —
5-Shot In-Context Learning

Full-Context Llama 8B 68.5+1.3 752115 1.0x 356+14 24.24+0.8
Hybrid Filter Llama 8B 70.2+1.2 77.1+1.4 2.2X 162111 15.8+0.7
Full-Context T5-3B 64.2+1.5 71.8+1.7 1.0x 285+12 18.9+0.6
Hybrid Filter T5-3B 65.8+1.4 73.2+1.6 2.1x 136110 124405
Fine-Tuned (3 epochs, 8x A100)

Full-Context Llama 8B 77.8+1.2 84.1+13 1.0x 352+15 23.840.9
Hybrid Filter Llama 8B 79.2+1.1 85.3+1.2 2.3% 152+11 15.4+0.7
Paired t-test p =0.012 p =0.018 — p < 0.001 p <0.001
Full-Context T5-3B 76.1+1.3 81.9+14 1.0x 284413 18.6+0.7
Hybrid Filter T5-3B 76.5+1.3 82.7+1.4 2.2X 13019 12.240.5
Full-Context Flan-T5-XL 77.14+1.2 83.5+1.3 1.0x 298+14 21.4+0.8
Hybrid Filter Flan-T5-XL 77.8+1.2 83.9+1.3 2.1% 142+10 14.1+£0.6

The hybrid filtering method achieves consistent speedup across all model sizes and training regimes. For the fine-tuned Llama
8B (our primary result), the speedup reaches 2.3x, accompanied by a 58% latency reduction and a 35% memory reduction.
Accuracy metrics show modest gains: EM increases by 1.4 percentage points (79.2% vs. 77.8%, p = 0.012) and F1 increases by 1.2
percentage points (85.3% vs. 84.1%, p = 0.018). The counterintuitive EM improvement reflects the method'’s ability to eliminate
confusing distractors; removing irrelevant context sometimes aids the model's decision. Context reduction averages 41+3%

sentences retained.

5.2 Ablation Study

Table 2 isolates the contribution of each component using fine-tuned Llama 8B.

Table 2: Component Ablation: Isolated Contribution of Each Similarity Metric and Validation (Fine-Tuned Llama 8B). Mean + Std
over 10 runs. Paired t-test against the full method.

Configuration EM (%) F1 (%) Lat. (ms) AEM p-value Cohen’'s d
Full Hybrid 79.2+1.1 85.3+1.2 152411 — — —
Metric Removal

—Cosine 76.01+1.3 81.8+1.4 145410 -3.2 0.002 -245
-WMD 76.4+1.2 82.4+13 13849 -2.8 0.004 -2.15
-Bitap 773+1.2 83.2+13 149+10 -1.9 0.008 -1.45
—-LLM Validation 76.8+1.3 82.9+14 13449 -24 0.006 -1.85
Single Metric Baseline

Cosine Only 72.5+1.5 78.9+1.6 12848 -6.7 < 0.001 -5.15
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WMD Only 71.8+1.6 78.1+£1.7 13549 -74 <0.001 -5.68
Bitap Only 70.2+1.7 764118 14148 -9.0 <0.001 -6.92

Each component makes a meaningful contribution to the overall performance. Removing cosine similarity causes the largest
degradation (-3.2 EM points), followed by WMD (-2.8 points) and Bitap (-1.9 points). All individual removals yield statistically
significant performance decreases (p < 0.01). Single-metric baselines substantially underperform, with Bitap-only achieving only
70.2 EM compared to 79.2 for the full hybrid approach, demonstrating that metric diversity is essential.

5.3 Context Length Robustness
Table 3 evaluates robustness across varying passage lengths.

Table 3: Robustness Across Context Length (Fine-Tuned Llama 8B). Passages binned by token count. Mean + Std over 10 runs.

Length (tokens) N Full-Context Hybrid Filter A EM
EM (%) F1 (%) EM (%) F1 (%)

100-200 1,850 84.5+1.0 89.2+1.1 85.1+£0.9 89.8+1.0 +0.6

200-400 3,420 79.8+1.2 85.4+1.3 81.2+1.1 86.9+1.2 +14

400-600 3,300 772114 82.1+£15 79.0+1.3 84.4+1.4 +1.8

>600 2,430 75.1+1.6 80.2+1.7 77.8+1.4 83.1£1.5 +2.7

Overall 11,000 778112 84.1+1.3 79.2+1.1 85.3+1.2 +14

The method exhibits consistent improvements across all context length bins, with larger relative gains for longer passages (+2.7
EM points for over 600 tokens vs. +0.6 for 100-200 tokens). This pattern aligns with the hypothesis that filtering becomes more
valuable as context length increases and the challenge of disambiguating multiple candidate answers grows more acute.

5.4 Out-of-Distribution Evaluation
Table 4 assesses generalization to SQUAD 2.0 unanswerable questions and the NewsQA dataset (Trischler et al., 2017).

Table4: Out-of-Distribution Robustness (Fine-Tuned Llama 8B). Mean + Std over 5 runs.

Evaluation Set Method EM (%) F1 (%) Ctx. Ret. (%) Latency (ms)

SQuUAD 2.0 Unanswerable Full-Context 73.211.3 78.9+14 — 352+14
Hybrid Filter 71.5+1.4 77.1+1.5 42+3 145410

NewsQA (Trischler et al., 2017) Full-Context 68.4+1.5 74.2+1.6 — 348+15
Hybrid Filter 70.2+1.4 75.841.5 39+4 142411

On SQUAD 2.0 unanswerable questions, the hybrid method shows a modest 1.7 EM point decrease but still maintains speedup.
On NewsQA (an out-of-domain dataset), the method achieves an interesting +1.8 EM point improvement despite aggressive
filtering, suggesting that the approach generalizes well to news articles with different linguistic characteristics. The consistency
across datasets indicates robustness.

5.5 Computational Cost Decomposition
Table 5 provides detailed cost attribution for our pipeline.

Table 5: Computational Cost Breakdown per Question (Llama 8B Fine-Tuned). Times in milliseconds, mean over 100 samples.

COMPONENT MEAN (MS) STD (MS) % TOTAL NOTES

Keyword Extraction 12 2 8% Single LLM call
Embedding Computation 15 3 10% all-MiniLM-L6-v2
Similarity Scoring 28 4 18% Cosine + WMD + Bitap
LLM Validation 10 3 7% ~4 borderline sentences
Main QA Inference 87 9 57% Filtered context (41% retained)
Total (Filtering) 152 11 100% Full pipeline
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Full-Context Baseline 356 14 — No filtering
Speedup 2.34x%

The QA inference component dominates wall-clock time (57%), followed by similarity scoring (18%) and embedding
computation (10%). Keyword extraction and LLM validation together account for only 15% of the total cost. The speedup is
primarily attributed to the reduced context size fed to the main encoder, which reduces quadratic attention computation.

6. Discussion

6.1 Key Findings

Our results establish that unsupervised, parameter-free context filtering achieves substantial computational efficiency without
requiring learned retrieval components (Karpukhin et al., 2020). The consistent 2.3x speedup across model architectures and
training regimes demonstrates the generality of the approach. The observation that context filtering sometimes improves
accuracy (EM +1.4 points for Llama 8B fine-tuned) suggests that removing confusing distractors aids decision-making in addition
to reducing computational burden (Vasheghani & Sharifi, 2025).

The ablation study confirms the necessity of metric diversity. Removing any single similarity component yields statistically
significant degradation (p < 0.01), with cosine similarity contributing the largest gain (3.2 EM points) (Reimers & Gurevych,
2019). No single metric suffices: WMD captures distributional properties (Kusner et al., 2015); cosine captures semantic
alignment; Bitap captures lexical exactness. The hybrid approach exploits this complementarity.

LLM validation for borderline contexts recovers 38+4% of filtered sentences and contributes 2.1 percentage points to F1. This
targeted validation is 73% more efficient than full-context LLM inference, validating the two-threshold design (Wei, Bosma, et al.,
2022).

Robustness analysis reveals enhanced relative performance on longer passages (+2.7 EM for over 600 tokens), aligning with the
premise that filtering becomes increasingly valuable as context size and ambiguity increase (Child et al., 2019). Out-of-
distribution evaluation on NewsQA shows generalization, with the method achieving competitive accuracy on a lexically distinct
domain.

6.2 Comparison to Prior Work

Our approach trades absolute accuracy for computational efficiency compared to state-of-the-art systems (Clark et al., 2020).
ELECTRA achieves 88.7 EM and 91.4 F1 (leaderboard single-model entry), while our best result (fine-tuned Llama 8B) reaches 79.2
EM and 85.3 F1, an 8.9 EM and 5.6 F1 gap. This trade-off is intentional and expected given our focus on computational efficiency
rather than maximum accuracy (Y. Gao et al.,, 2024). The 2.3x speedup and 35% memory reduction enable deployment on
resource-constrained devices infeasible for full SOTA systems.

Compared to dense passage retrieval methods (Karpukhin et al., 2020), our approach eliminates the need for learned retrievers,
thereby avoiding training overhead and enabling domain adaptation without fine-tuning. While DPR achieves a superior ranking
in zero-shot settings, the training cost is substantial. Our classical metrics require no training, making the method suitable for
scenarios with limited resources or rapidly evolving question types.

Context compression methods (Y. Gao et al., 2024) requiring supervised rationale annotations are more labor-intensive. Our
unsupervised filtering is more practical for real-world datasets lacking explicit supervision (Wu et al., 2023).

6.3 Limitations

Several limitations warrant explicit discussion. First, the accuracy gap relative to SOTA systems (8—-9 EM points) may be
prohibitive for applications demanding maximum accuracy. Second, the method relies on word embeddings and string
matching; sophisticated paraphrasing not captured by the embedding model may cause relevant sentences to be incorrectly
filtered. Third, filtering operates at sentence granularity; answers spanning multiple sentences may be incompletely retained if
one component sentence is filtered. Fourth, hyperparameter sensitivity (thresholds ¢, m, metric weights) may require re-tuning
for new datasets or domains. Fifth, the approach assumes question keywords can be reliably extracted via LLM; ambiguous or
context-dependent questions may have unstable keyword sets.

6.4 Future Work

Future research should investigate: (1) replacing fixed thresholds with a lightweight learned threshold predictor trained on the
development set; (2) handling multi-sentence answers via dependency parsing to maintain sentence chains; (3) using separate
lightweight models for validation to decouple and improve efficiency; (4) domain-adaptive threshold calibration without full
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retraining; (5) exploring whether retrieval-augmented generation paradigms can adapt our filtering approach (Y. Gao et al.,
2024); (6) narrowing the accuracy gap with SOTA systems via better embedding models or learned metrics (Rathod et al., 2024).

7. Conclusion

This work presents a hybrid context filtering framework for efficient extractive question answering on SQUAD. By combining
three complementary classical similarity metrics (cosine, WMD, Bitap) with selective LLM validation, we achieve principled context
reduction enabling 2.3x inference speedup and 58% latency reduction. A comprehensive evaluation across four model scales,
including both 5-shot and fine-tuned settings, as well as robustness analyses across various context lengths and out-of-
distribution datasets, substantiates the method'’s practical utility. The key contribution is demonstrating that parameter-free,
unsupervised filtering can substantially reduce computational costs with acceptable trade-offs in accuracy. This is particularly
valuable for deployment scenarios with computational constraints, enabling real-world QA systems to operate efficiently. Future
work should focus on narrowing the accuracy gap while maintaining efficiency gains, expanding the approach to other retrieval-
augmented generation tasks, and developing automatic threshold calibration mechanisms.
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