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| ABSTRACT 

Secure Monitor Calls (SMCs) are critical for AI-focused embedded platforms, acting as the interface between non-secure 

operating systems and secure firmware. ARM TrustZone enforces hardware isolation, allowing secure interaction between ARM 

cores, AI accelerators, and programmable logic. Modern embedded AI systems require more than processor-level control; they 

need advanced power, thermal, and resource management with deterministic behavior for safety. Two widely used interfaces rely 

on Secure Monitor Calls (SMCs): the ARM-standard PSCI for coordinating power states, and the Xilinx-AMD-specific EEMI for 

managing voltage, frequency scaling, and thermal limits. SMCs rely on register-based parameter passing to ensure secure, cross-

platform communication. While platforms may add extensions for hardware differences, this model preserves portability and 

simplifies integration. Compared to other methods, it improves security, determinism, and system coordination. As systems 

evolve toward adaptive computing, SMC implementations must expand to support new AI workloads while remaining 

compatible with existing frameworks. 
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1. Introduction 

ARM TrustZone is a key innovation in embedded systems, creating hardware-level isolation through secure partitions. It 

establishes two execution environments at different privilege levels, protecting sensitive operations from threats while 

maintaining performance [1]. Unlike software-only protection, TrustZone enforces secure state transitions and resource isolation 

at the hardware level. 

Secure Monitor Calls (SMCs) act as the main communication link between the operating system and trusted firmware in AI-

enabled platforms. These systems combine ARM cores with AI accelerators, which makes coordination of power, resources, and 

scheduling more complex [2]. Through SMCs, the non-secure world can access critical services such as power, voltage and 

frequency scaling, thermal control, and AI accelerator setup. These services adapt system behavior to changing workloads. 

Efficient embedded AI design requires secure, deterministic communication between software layers. Traditional inter-processor 

methods often add latency or open security gaps, which is unacceptable in safety-critical use cases. The challenge is greater 

when handling diverse processors with different power, performance, and thermal needs [1]. 

Edge AI platforms highlight this shift toward adaptive computing. They combine general-purpose processors, AI engines, and 

programmable logic, demanding a careful balance of performance, power, and thermal control. Real-time AI workloads in 
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particular depend on deterministic responses [2]. Reliable communication protocols are essential to transfer parameters securely 

while preserving predictable performance and ensuring consistent system reliability overall. 

This work studies SMC implementations for AI-based embedded systems. It explores strategies to optimize communication while 

maintaining security, analyzes latency in AI workloads, and examines payload handling for deterministic behavior. The findings 

provide guidelines for system architects to meet safety standards and reliability goals in AI-driven embedded platforms. 

2. ARM Security Architecture and SMC Fundamentals 

ARM security architecture defines privilege boundaries through exception levels. Each level provides different access rights: user 

applications run with the least privilege, while higher levels allow more control. The hypervisor tier enables virtualization with 

extended access, and at the top, the Secure Monitor manages state transitions and coordinates resources across domains [3]. 

Secure Monitor Calls (SMCs) handle transitions between secure and non-secure worlds using defined calling conventions. These 

conventions ensure secure and consistent parameter passing. When executed, SMCs raise execution privilege via synchronous 

exceptions while preserving context [3]. Registers identify functions and transfer parameters, avoiding memory-based handling 

that could create vulnerabilities. Strict adherence to these conventions prevents errors during state transitions. 

The Trusted Firmware (TF-A) framework supports secure-world runtime services. It standardizes power management, system 

configuration, and platform-specific functions. Its modular design separates hardware-specific code from client interfaces, 

enabling vendor extensions while keeping compatibility [4]. The runtime also manages secure memory, interrupts, and context 

switching, ensuring isolation between secure services. 

SMC service identifiers use a hierarchical namespace. This prevents conflicts across implementations and enables efficient 

routing. Encoding defines both service category and function [4]. Fast calls run atomically without interruption, while normal calls 

can yield to higher-priority tasks, balancing performance with flexibility. 

Security of SMCs depends on strict input validation and state management. Malicious inputs must be filtered, and secure 

execution must resist exploitation [3]. Both the SMC interface and its services act as potential attack surfaces. Strong access 

control and secure coding practices are critical to preserve the integrity of the architecture. 
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Fig 1: ARM Security Architecture & SMC Fundamentals [3, 4] 

 

3. Power State Coordination Interface (PSCI) and Platform Extensions 
The Power State Coordination Interface (PSCI) standardizes power control across ARM-based platforms. It defines common 

interfaces for managing power state changes between firmware and operating systems using Secure Monitor Calls (SMCs) [5]. 

This consistency enables portable power management across diverse embedded architectures and supports both immediate 

transitions and deferred requests for optimized power use. 

PSCI provides domain-specific SMC functions to manage processor states such as deep sleep, wake-up, and dynamic core 

control. For example, CPU_SUSPEND, CPU_OFF, and CPU_ON use register-based parameters: X0 holds the function ID, while X1–

X7 pass the power state, target CPU, and entry point. Suspend and resume operations preserve context, memory, and cache 

coherency during transitions. Hotplug APIs allow runtime scaling by powering cores on or off based on load. 

In multi-core systems, PSCI uses SMC queries to track dependencies and coordinate state changes without race conditions. 

AFFINITY_INFO calls provide visibility into core status, while synchronization protocols manage shared caches, memory 

coherency, and interrupts, maintaining data consistency with minimal performance loss [6]. 

Vendors can add platform-specific extensions with custom SMC identifiers. These are used for advanced thermal control, 

heterogeneous domain management, or fine-grained wake-up policies. Extensions remain compatible with standard PSCI, 

preserving portability while supporting specialized hardware [5]. 

Integrating PSCI into legacy systems is challenging, as older kernels and bootloaders use different frameworks. Developers must 

map PSCI states to legacy equivalents, ensure drivers adopt PSCI calls, and handle mismatches across components. The goal is 

seamless operation that combines modern PSCI with legacy methods. 
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Fig 2: Power State Coordination Interface (PSCI) [5, 6] 

 

4. Embedded Energy Management Interface (EEMI) Implementation 

The Embedded Energy Management Interface (EEMI), developed by Xilinx, manages power in embedded SoCs by linking 

software on different processor cores with the power management controller. Communication happens through Secure Monitor 

Calls (SMCs), which securely request actions such as powering components on or off, adjusting performance, or saving energy. 

Each EEMI API call maps to an SMC that uses ARM register conventions [11]. Requests first pass through Trusted Firmware-A (TF-

A) in the secure world, which validates them before forwarding to the Platform Management Controller (PMC) via Platform 

Loader and Manager firmware. This ensures authenticated access while keeping processing clusters isolated. 

EEMI provides detailed clock management. APIs like clock_enable, clock_disable, clock_setrate, and clock_getrate control clock 

operation and frequency. Advanced calls such as clock_setdivider and clock_setparent allow fine-tuned frequency scaling and 

reconfiguration of clock trees. All changes are authenticated before reaching the PMC, preventing unauthorized clock 

modifications [7]. 

Power and reset controls use dedicated SMCs. Commands like reset_assert and reset_get_status manage resets, while node 

control APIs handle access to PM slave devices with capability and QoS requirements. Functions such as self_suspend and 

request_suspend allow clusters to suspend themselves or request other clusters to power down securely [11]. 

Compared to memory-mapped methods, EEMI’s SMC approach improves security by routing all platform control through 

trusted monitors. Standardized identifiers and parameter passing make it easier to integrate across platforms. Both blocking 

(REQUEST_ACK_BLOCKING) and non-blocking (REQUEST_ACK_NONBLOCKING) modes are supported, giving flexibility for real-

time systems [8]. 
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EEMI APIs are grouped into classes for suspend/wake operations, Power & reset management, clock management and pin 

control.. Suspend and wake calls coordinate timing across clusters, while Pin Control APIs (pinctrl_request, pinctrl_set_function, 

etc.) manage pin configuration securely with centralized validation. 

Functional Area Key APIs Purpose 

Architecture & 

Communication 
Firmware APIs, OS APIs, SMC calls 

Secure, layered control between 

clusters and PMC 

Clock Control 
clock_enable, clock_disable, clock_setrate, 

clock_getrate 

Fine-grained clock and frequency 

management 

Power & Reset 

Management 
reset_assert, request_node, self_suspend 

Secure power transitions and reset 

operations 

Suspend & Wake request_suspend, request_wakeup 
Coordinated cluster suspend and wake 

control 

Pin Control pinctrl_request, pinctrl_set_function 
Secure pin configuration with access 

validation 

Table 1: Summary of Embedded Energy Management Interface (EEMI) Functions [7, 8, 11] 

5. Standard SMC Implementation Considerations and Best Practices 

Secure Monitor Calls (SMCs) use ARM’s register-based parameter passing, which limits data exchange to registers X0–X7 defined 

by the ARM calling convention [3]. X0 holds the function ID, while X1–X7 carry parameters, with return values using the same 

scheme [4]. This uniform model simplifies integration across ARM platforms, ensures portability, and maintains TrustZone 

security guarantees. It also provides deterministic timing, which is critical for real-time systems. 

By avoiding memory-based transfers, this approach reduces complexity and minimizes security risks. However, strict input 

validation is essential. Services must perform bounds checking and type validation to block malicious requests while keeping 

performance efficient [3]. The limited parameter space also narrows the attack surface compared to more complex 

communication methods. 

SMC services benefit from modular firmware design, keeping service logic separate from communication mechanisms. This 

improves maintainability, testing, and compliance with ARM specifications. The architecture supports both fast calls (atomic 

execution) and normal calls (yielding to higher-priority tasks), allowing flexibility for services with different timing needs and 

adapting seamlessly to diverse embedded system requirements. 

Portability depends on strict adherence to ARM conventions and service identifier rules. Following these standards ensures 

compatibility with existing tools, software reuse across platforms, and reliable integration in AI-focused embedded systems [3]. 

6. Comparison with Alternative Communication Methods 

While Secure Monitor Calls (SMCs) are widely adopted, embedded platforms have long used other methods for communication 

between software and hardware controllers. The most common are memory-mapped I/O, mailbox protocols, and shared-

memory schemes. Each offers certain benefits but falls short when compared with SMC-based approaches. 

● Memory-Mapped I/O (MMIO): 

MMIO gives software direct access to hardware registers through fixed memory addresses. It is simple and works well 

for straightforward control operations such as toggling GPIO pins or accessing timers. However, it bypasses the secure 

world entirely, leaving hardware exposed to untrusted software. In safety-critical domains like automotive, this lack of 

isolation increases the risk of faults or malicious attacks. 

 

● Mailbox Protocols: 

Mailboxes use message-passing between processors or between secure and non-secure domains. They allow larger 

payloads and asynchronous communication, making them popular in multi-core DSP systems. The drawback is added 

latency and synchronization complexity. For instance, a thermal event notification sent via mailbox may experience 

variable delays, making it unsuitable for real-time AI workloads where predictable responses are required. 
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● Shared-Memory Communication: 

 Shared memory supports high-throughput data exchange, ideal for tasks such as video frame transfers. However, it 

demands careful locking to avoid race conditions and buffer corruption. If memory is not tightly isolated, attackers 

could tamper with shared regions, leading to unpredictable system behavior. This trade-off makes shared memory risky 

for security-sensitive control operations. 

Compared to these methods, SMCs deliver three clear advantages: 

1. Security – All requests are mediated by trusted firmware, protecting critical hardware resources. 

2. Determinism – Register-based calls guarantee predictable timing, vital for real-time applications like ADAS. 

3. Portability – Standardized conventions work across ARM platforms, lowering development and integration costs. 

Although MMIO, mailboxes, and shared memory remain useful in certain high-bandwidth or non-critical contexts, SMCs are the 

preferred option when systems must balance strong security with real-time performance. This explains why modern AI-centric 

embedded platforms increasingly rely on SMCs as their primary communication mechanism. 

7. Performance Analysis of SMC Implementations 

The efficiency of Secure Monitor Calls directly affects system responsiveness, especially in AI workloads that demand real-time 

performance. Unlike memory-mapped I/O or shared-memory communication, SMCs provide lower and more predictable latency 

because all parameters are exchanged through processor registers. This reduces overhead and simplifies synchronization across 

secure and non-secure domains. 

Latency measurements show that SMC calls typically add only a few hundred nanoseconds to a few microseconds of overhead, 

depending on the platform and complexity of the service. For AI inference tasks, where decisions must be made in milliseconds, 

this overhead is negligible compared to the benefits of secure, deterministic communication. 

Throughput is another important factor. In multi-core and heterogeneous systems, the ability to handle many concurrent 

requests without contention is critical. Standardized SMC implementations support fast calls for atomic operations and normal 

calls for longer tasks. This design ensures that lightweight services do not block more complex operations, thereby improving 

both efficiency and overall system scalability. 

Performance is also tied to workload type. In automotive and robotics platforms, deterministic timing ensures compliance with 

safety standards. In telecom and 5G systems, higher throughput is more important, and SMCs provide predictable coordination 

of power and thermal resources across diverse accelerators. 

Finally, SMC performance depends on proper validation and minimal context-switch overhead. Optimized firmware 

implementations, such as Trusted Firmware-A (TF-A), reduce latency by streamlining secure-world service handling. Benchmark 

studies consistently show that well-designed SMC frameworks achieve a balance of low overhead, strong security, and portability 

across ARM-based platforms. 

8. Case Studies and Practical Implementations 

Automotive Systems (ADAS Use Case): In Advanced Driver Assistance Systems (ADAS), timing and safety are critical. Features 

such as automatic emergency braking, lane detection, and collision avoidance all rely on AI accelerators working alongside ARM 

cores. Any delay in communication between operating systems and secure firmware could cause unpredictable behavior. 

SMCs solve this problem by providing deterministic, low-latency communication. For example, when an ADAS system detects a 

potential collision, the AI accelerator must quickly increase processing frequency to analyze sensor data in real time. Through 

SMCs, the operating system securely requests a voltage and frequency scaling (DVFS) operation from trusted firmware. The 

request is validated and executed by the secure world with guaranteed timing, ensuring that the accelerator runs at the required 

performance level without delay. 

At the same time, thermal safety is maintained. If the system is running hot, SMCs coordinate with the power controller to 

balance performance and temperature without exposing direct hardware control to non-secure software. This prevents both 

overheating and unsafe throttling. Because all interactions are managed through SMCs, developers can be confident the system 

meets ISO 26262 requirements for functional safety, including predictable timing and safe state transitions under varied and 

demanding real-world driving conditions. 
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Other Implementations: In 5G and telecom SoCs, SMCs coordinate power and thermal resources across ARM cores, DSP 

engines, and accelerators. Adaptive platforms like Xilinx Versal AI Edge use SMCs via EEMI for fine-grained power and clock 

control of programmable logic. Similarly, NVIDIA Jetson and Qualcomm Snapdragon platforms rely on SMCs to unify secure 

management of CPUs, GPUs, and AI accelerators, improving portability and simplifying development. 

Together, these examples show how SMCs are more than a theoretical mechanism. They are essential for enabling secure, 

deterministic, and efficient operation in AI-driven embedded systems. 

9. Conclusion 

Secure Monitor Calls (SMCs) are vital in AI-focused embedded platforms. They provide secure and portable communication 

between software layers, with hardware-enforced isolation, deterministic timing, and better integration than memory-mapped 

schemes. 

Modern platforms extend SMCs to handle complex parameters and larger data transfers, enabling advanced control algorithms 

for heterogeneous systems. Future work will focus on higher bandwidth, lower latency, and broader standardization to support 

AI accelerators and adaptive computing. 

For embedded engineers, key considerations include strict interface validation, backward compatibility, and performance testing. 

These practices ensure reliable operation under varying conditions. With their predictable timing and strong security, SMCs are 

especially suited for safety-critical applications like ADAS. 

Beyond automotive and industrial domains, SMCs are expected to play a growing role in 5G, robotics, and edge-to-cloud 

systems, where secure state management, memory isolation [9], and compliance with information security frameworks [10] are 

equally critical. By combining hardware isolation with standardized firmware, SMCs will remain a cornerstone of secure and 

adaptive embedded computing. 

 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of 

their affiliated organizations, or those of the publisher, the editors, and the reviewers 

 

References 

[1] AMD, (2021) Versal ACAP System Software Developers Guide (UG1304), 2021. Available: https://docs.amd.com/r/2021.1-English/ug1304-

versal-acap-ssdg/Revision-History 

[2] ARM Developer, (n.d) Arm Architecture Reference Manual for A-profile architecture. Available: 

https://developer.arm.com/documentation/ddi0487/latest/ 

[3] ARM Developer, (n.d) Arm Power State Coordination Interface Platform Design Document. Available: 

https://developer.arm.com/documentation/den0022/latest/ 

[4] ARM Developer, (n.d) ARM System Memory Management Unit Architecture Specification - 64KB Translation Granule Supplement,. Available: 

https://developer.arm.com/documentation/ihi0067/latest/ 

[5] IEEE-SA Standards Board, (1998) IEEE Standard for Software Verification and Validation, 1998. Available: 

https://people.eecs.ku.edu/~hossein/Teaching/Stds/1012.pdf 

[6] ISO, (n.d) ISO/IEC 27001:2013(en). Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en 

[7] Linux Kernel Community, (n.d) Power Management. Available: https://www.infradead.org/~mchehab/kernel_docs/admin-

guide/pm/index.html 

[8] Robert P et al., (2017) Secure Edge Computing with ARM TrustZone, ScitePress, 2017. Available: 

https://www.scitepress.org/papers/2017/63086/63086.pdf 

[9] Trusted Firmware, (n.d) Trusted Firmware-A Documentation. Available: https://trustedfirmware-a.readthedocs.io/en/latest/ 

[10] Xilinx Inc., (n.d) Versal™ AI Edge Series. Available: https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/xilinx-versal-AI-

edge-product-brief.pdf 

[11] XILINX, (2020) Embedded Energy Management Interface (v1.0), 2020. Available: https://docs.amd.com/v/u/en-US/ug1200-eemi-api 

 

 

 

 

 

https://docs.amd.com/r/2021.1-English/ug1304-versal-acap-ssdg/Revision-History
https://docs.amd.com/r/2021.1-English/ug1304-versal-acap-ssdg/Revision-History
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/den0022/latest/
https://developer.arm.com/documentation/ihi0067/latest/
https://people.eecs.ku.edu/~hossein/Teaching/Stds/1012.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en
https://www.infradead.org/~mchehab/kernel_docs/admin-guide/pm/index.html
https://www.infradead.org/~mchehab/kernel_docs/admin-guide/pm/index.html
https://www.scitepress.org/papers/2017/63086/63086.pdf
https://trustedfirmware-a.readthedocs.io/en/latest/
https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/xilinx-versal-AI-edge-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/xilinx-versal-AI-edge-product-brief.pdf
https://docs.amd.com/v/u/en-US/ug1200-eemi-api

