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| ABSTRACT 

The rapid adoption of open table formats has fundamentally transformed modern data engineering by enabling ACID 

transactions, schema evolution, and time travel capabilities on cloud object storage systems. Apache Iceberg, Delta Lake, and 

Apache Hudi represent the three dominant solutions that have emerged to address traditional data lake limitations, including a 

lack of transactional guarantees, concurrent write challenges, and metadata management inefficiencies. This evaluation 

conducts empirical benchmarking across terabyte-scale datasets to compare these formats across critical dimensions, including 

metadata scalability, transaction isolation guarantees, concurrent write handling, compaction strategies, streaming consistency 

semantics, and cross-engine interoperability. Testing scenarios encompass bulk ingestion throughput, incremental write latency, 

selective query performance, time travel operations, schema evolution capabilities, and maintenance overhead under varying 

concurrency levels. Results reveal that Iceberg excels in read-heavy analytics workloads with superior query planning efficiency 

and cross-engine portability, Delta Lake demonstrates operational simplicity with strong Spark integration and the highest bulk 

write throughput, while Hudi offers flexible write-read tradeoffs through dual table types optimized for streaming upserts. 

Format convergence trends indicate rapid feature adoption across competing implementations, reducing vendor lock-in risks 

and enabling organizations to select formats based on specific workload characteristics rather than seeking universally optimal 

solutions. The article establishes quantitative foundations for practitioners navigating table format selection as lakehouse 

architectures become the dominant paradigm for enterprise data platforms, with direct implications for infrastructure costs, 

operational complexity, and analytical performance at scale. 
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1. Introduction 

The current data environment has undergone a paradigm shift due to the introduction of lakehouse architectures that consolidate 

data warehousing and data lake functionality into a single architecture. Lakehouse methodology is a performance and structure-

based approach that integrates the performance and structure of data warehouses with the flexibility and cost-effectiveness of 

data lakes and allows organizations to store all their data at a single location and to support various analytical workloads such as 

business intelligence and machine learning [1]. This architectural evolution has been driven by the limitations of traditional two-

tier architectures, where data lakes stored raw data separately from data warehouses, creating complexity, data duplication, and 

reliability challenges that hindered analytical capabilities. 

Open table formats have emerged as the foundational technology enabling lakehouse implementations by providing ACID 

transaction guarantees, schema evolution, time travel capabilities, and metadata management on top of cloud object storage 

systems. Apache Iceberg, Delta Lake, and Apache Hudi represent the three dominant open table formats that have gained 

significant traction across enterprise organizations. Microsoft Azure documentation emphasizes that the lakehouse paradigm 
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delivers reliability and performance on data lakes through these open formats, enabling organizations to eliminate data silos and 

reduce infrastructure complexity while maintaining enterprise-grade data management capabilities [5]. Although these formats 

have been widely adopted and are increasingly of interest to various industries, there are few extensive empirical comparisons of 

the formats under controlled and large-scale environments, both in the academic literature and in industry publications. 

In this research, the critical gap can be bridged by performing rigorous performance tests on terabyte-scale datasets, the metadata 

scalability, the scalability of transaction isolation, cross-engine interoperability, and cross-engine concurrent write handling. Our 

methodology employs controlled benchmarking scenarios that simulate real-world production workloads, including bulk 

ingestion, streaming writes, selective queries, and time travel operations. The findings provide quantitative insights into 

architectural tradeoffs inherent in each format and establish a reference framework for organizations selecting long-term table 

format strategies as they transition to lakehouse platforms. 

2. Background and Architectural Foundations 

The evolution of table formats represents a fundamental shift in how organizations approach large-scale data management on 

cloud infrastructure. Traditional data lakes built on file formats like Parquet and ORC lacked essential database features, including 

atomic operations, concurrent write support, and schema evolution capabilities. RCFile introduced columnar storage optimizations 

for MapReduce-based systems, demonstrating how data placement structures significantly impact query performance through 

improved compression ratios and reduced I/O operations during analytical processing [3]. These early innovations established the 

foundation for modern table formats by proving that metadata-driven approaches could dramatically enhance data lake 

performance without sacrificing the flexibility of object storage systems. 

Apache Iceberg addresses metadata scalability challenges through its three-tier hierarchical structure consisting of metadata files, 

manifest lists, and manifest files that track data file locations and statistics. The technical documentation of Oracle points out that 

the architecture of Iceberg provides efficient pruning of partitions, query planning in that it keeps column-level statistics and 

supports the hidden schemes of partitioning, which facilitates evolution of partitions without rewriting of data [2]. The format uses 

optimistic concurrency control with snapshot isolation guarantees, such that parallel readers and writers can co-exist without 

conflicting reads or writes and have consistent views of table data. The storage-agnostic design of Iceberg does not provide explicit 

specifications of a particular storage system or compute engine, allowing wide adoption across a wide range of different analytical 

engines, such as Apache Spark, Apache Flink, Trino, and cloud-native query engines. 

Delta Lake implements a transaction log architecture where all table modifications are recorded as ordered, immutable entries in 

a centralized log stored alongside table data. The format documentation describes how Delta Lake provides ACID guarantees 

through this log-based approach, with each commit receiving a monotonically increasing version number that establishes a total 

ordering of all table operations [10]. Checkpointing mechanisms periodically consolidate the transaction log to prevent unbounded 

growth and maintain efficient query planning performance. The format integrates deeply with Apache Spark's execution engine 

and provides features including deletion vectors for efficient update operations, liquid clustering for automatic data optimization, 

and UniForm capability enabling dual-format reads where tables written as Delta can be consumed as Iceberg tables by external 

engines. 

Apache Hudi distinguishes itself through its flexible architecture, offering two distinct table types that enable workload-specific 

optimizations. Copy-on-Write tables rewrite entire data files during updates to maintain optimal read performance, while Merge-

on-Read tables append changes to log files for lower write latency at the cost of increased read complexity. The Hudi 

documentation explains that this dual-mode approach allows organizations to tune their tables based on read-write ratio 

requirements, with Merge-on-Read excelling for streaming ingestion scenarios and Copy-on-Write preferred for analytical 

workloads prioritizing query performance [9]. The timeline service offered by Hudi has a global audit trail of table operations, 

which facilitates incremental processing patterns and supports efficient upsert operations with record-level index structures. The 

format offers configurable compaction policies that compromise write performance with storage efficiency and read latency, 

allowing practitioners to exercise control over the operational properties. 

The convergence of these formats reflects broader trends in distributed systems design, where competing approaches gradually 

adopt successful features from one another. MapReduce systems evolved from simple batch processing frameworks into 

sophisticated platforms supporting iterative algorithms and interactive queries through architectural innovations in metadata 

management and query optimization [4]. Similarly, modern table formats continue evolving by incorporating complementary 

capabilities while maintaining their core architectural philosophies, creating an ecosystem where format selection depends 

increasingly on workload characteristics and organizational constraints rather than absolute technical superiority.  
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Format Metadata Structure Transaction Model Storage Approach Primary Design Goal 

Apache 

Iceberg 

Three-tier hierarchy 

(metadata files, manifest 

lists, manifests) 

Optimistic concurrency 

with snapshot isolation 

Complete separation 

of metadata and data 

Read optimization and 

cross-engine portability 

Delta Lake 

Centralized append-only 

transaction log 

 with JSON entries 

Linearizable log-based 

commits with 

checkpointing 

The transaction log is 

stored alongside the 

data 

Operational simplicity 

and Spark integration 

Apache Hudi 
Timeline service with 

embedded metadata 

File-level conflict detection 

with dual modes 

Metadata embedded 

within data layout 

Write flexibility and 

streaming optimization 

Table 1: Architectural Characteristics of Open Table Formats [3, 4] 

3. Methodology and Experimental Design 

The experimental methodology employed controlled benchmarking across terabyte-scale synthetic datasets designed to represent 

common production workload patterns observed in enterprise data platforms. The benchmark environment utilized a dedicated 

compute cluster with specifications chosen to eliminate resource bottlenecks that might obscure format-specific performance 

characteristics. Dataset construction followed principles established in distributed database research, where synthetic data 

generation enables reproducible experiments while capturing essential characteristics of real-world workloads, including skewed 

distributions, temporal patterns, and high-cardinality dimensions. 

The primary evaluation dataset consisted of five terabytes of e-commerce clickstream events with fifty billion individual records, 

incorporating high-cardinality attributes representing user identifiers, session identifiers, and product catalog references. Temporal 

partitioning by date and hour created thousands of leaf partitions reflecting typical production table structures where data arrives 

continuously, and queries target specific time ranges. A secondary dataset modeled industrial IoT sensor telemetry with three 

terabytes of time-series measurements generated by simulated sensor networks, while a financial transaction dataset provided 

two terabytes of structured records with monetary values and categorical attributes. These datasets enabled comprehensive 

evaluation across diverse access patterns, including sequential scans, selective queries with complex predicates, and point lookups 

requiring efficient metadata filtering. 

Benchmark scenarios covered eight critical operational categories representing the full lifecycle of production table management. 

Bulk ingestion testing measured initial data loading performance and metadata creation overhead under varying parallelism levels 

from twenty to two hundred concurrent writers. Incremental write scenarios simulated streaming pipelines with micro-batches 

arriving at regular intervals, evaluating steady-state write latency and throughput characteristics. Concurrent write testing assessed 

transaction isolation and conflict resolution mechanisms by executing overlapping writes to shared partition ranges, measuring 

conflict rates and retry behavior under increasing concurrency pressure. Read performance evaluation included full table scans 

measuring raw throughput, selective queries testing predicate pushdown efficiency, and time travel operations accessing historical 

snapshots to evaluate snapshot resolution overhead. 

Schema evolution testing validated each format's capabilities for adding columns, promoting data types, and evolving partition 

specifications, measuring both operation latency and impact on concurrent read-write workloads. Compaction testing addressed 

the small file problem inherent in streaming ingestion by consolidating accumulated micro-batch files and measuring optimization 

throughput alongside effects on concurrent operations. Cross-engine interoperability testing executed identical queries using 

Apache Spark, Apache Flink, Trino, and Presto to evaluate format portability and connector maturity across diverse execution 

engines. Instrumentation captured comprehensive metrics, including operation latency percentiles, resource utilization across CPU, 

memory, and network dimensions, metadata overhead ratios, and cost-relevant factors such as object storage API request counts 

that directly impact cloud infrastructure expenses. 

The experimental design prioritized reproducibility and fair comparison by maintaining consistent cluster configurations, software 

versions, and workload characteristics across all format evaluations. Each test scenario executed multiple iterations with statistical 

analysis of results to account for measurement variance and ensure observed performance differences reflected genuine format 

characteristics rather than environmental noise. This rigorous methodology provides quantitative foundations for understanding 

architectural tradeoffs and operational implications of table format selection in production lakehouse deployments. 
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Scenario Category Workload Description Primary Metrics Test Variations 

Bulk Ingestion 
Initial data loading from source 

files 

Write throughput, metadata 

overhead, planning time 

Parallelism levels range from 

low to high concurrency 

Incremental Writes 
Continuous micro-batch 

streaming updates 

End-to-end latency percentiles, 

conflict rates 
Batch sizes and arrival intervals 

Concurrent Writers 
Parallel writes to overlapping 

partitions 

Conflict rate, retry behavior, and 

successful commits 

Writer counts from minimal to 

extreme concurrency 

Full Table Scans 
Sequential reads of complete 

datasets 

Read throughput, planning 

overhead, execution time 

Query parallelism and caching 

strategies 

Selective Queries 
Predicate pushdown with 

filtering 

Data scanned ratio, pruning 

efficiency 

Single partition, range filters, 

complex predicates 

Time Travel Queries Historical snapshot access 
Snapshot resolution time, 

metadata reads 

Snapshot ages from recent to 

historical 

Schema Evolution 
Column additions, type changes, 

and partition evolution 

Operation duration, backward 

compatibility 

Different evolution types and 

impacts 

Compaction 

Operations 

Small file consolidation and 

optimization 

Compaction throughput, file 

reduction, and impact 

Target file sizes and bin-

packing strategies 

Table 2: Benchmark Scenarios and Evaluation Metrics [5, 6] 

4. Results and Performance Analysis 

Performance evaluation revealed significant differences across formats in bulk ingestion throughput and metadata management 

efficiency. Delta Lake demonstrated the highest write throughput during initial data loading, processing data substantially faster 

than Iceberg, while Hudi Copy-on-Write showed the lowest baseline performance. The performance gap widened considerably 

under high concurrency scenarios with one hundred concurrent writers, where Delta Lake maintained stable throughput while 

Iceberg experienced degradation attributed to manifest list contention during parallel metadata updates. Metadata overhead 

measurements confirmed Iceberg's efficiency in storage utilization, generating the smallest metadata footprint relative to total 

data size, while Hudi's embedded metadata approach resulted in proportionally higher overhead. Partition handling characteristics 

diverged notably for high-cardinality partitioned tables, where Iceberg's hidden partitioning architecture maintained consistent 

performance regardless of partition count, whereas Delta Lake and Hudi exhibited performance degradation as partition cardinality 

increased to thousands of leaf partitions. 

Incremental write testing exposed distinct optimization strategies for streaming workloads and real-time data pipelines. Hudi 

Merge-on-Read tables achieved the lowest write latency for micro-batch ingestion by appending delta records to log files without 

rewriting base data files, followed by Iceberg with efficient manifest file updates, while Delta Lake showed higher latency variance 

attributed to periodic checkpoint consolidation every ten commits. Streaming consistency evaluation using Apache Flink 

demonstrated that all three formats successfully maintained exactly-once guarantees across extended test periods, though end-

to-end latency from source to queryable data varied significantly. Hudi Merge-on-Read achieved the fastest source-to-query 

latency, while Delta Lake's Spark Structured Streaming integration exhibited approximately twenty percent higher latency due to 

micro-batch coordination overhead. Update and delete performance testing revealed Hudi's architectural advantages for 

modification-heavy workloads, processing substantially more updates per second compared to Iceberg and Delta Lake, though 

read amplification on Merge-on-Read tables without recent compaction penalized query performance by factors approaching 

three times baseline measurements. 

Concurrent write handling revealed fundamental differences in transaction coordination strategies and scalability limits. At 

moderate concurrency with five parallel writers, all formats maintained minimal conflict rates below one percent with fast retry 

resolution. Increasing to ten concurrent writers exposed observable conflicts where Iceberg's optimistic concurrency control 

showed conflicts in the low single-digit percentage range with sub-second retry resolution, while Delta Lake exhibited slightly 

lower conflict rates but slower retry times attributed to transaction log validation overhead, and Hudi demonstrated the lowest 

conflict rate with longer resolution times reflecting its file-level conflict detection granularity. Beyond twenty concurrent writers, 
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all formats experienced performance degradation with distinct characteristics where Iceberg's manifest management became a 

bottleneck, showing exponential latency growth, Delta Lake's centralized transaction log created contention with more linear 

degradation, and Hudi maintained relatively stable throughput but required careful file sizing parameter tuning to avoid timeline 

service bottlenecks. 

Read performance analysis demonstrated that full table scan throughput remained comparable across formats within single-digit 

percentage differences, all bounded by object storage bandwidth limitations rather than format-specific characteristics. However, 

query planning time showed substantial divergence, where Iceberg averaged the fastest planning for large tables through its 

hierarchical metadata structure, Delta Lake required additional time for transaction log scanning from the last checkpoint, and 

Hudi needed the longest planning duration due to timeline-based file discovery requiring iteration through commit history. 

Predicate pushdown efficiency testing revealed Iceberg's superior partition pruning capabilities, achieving the highest data 

reduction percentages through column-level statistics stored in manifest files, while Delta Lake achieved competitive but slightly 

lower reduction through partition pruning with file-level statistics, and Hudi demonstrated the least aggressive pruning due to 

coarser-grained statistics in timeline metadata. 

Time travel query performance highlighted architectural implications where Iceberg's immutable metadata files enabled instant 

access to historical snapshots regardless of age with no observable planning time overhead, Delta Lake's incremental transaction 

log required scanning from last checkpoint to target timestamp adding latency that scaled with snapshot age, and Hudi's timeline 

compaction occasionally impacted historical reads when archival had occurred between snapshot creation and query execution. 

Cross-engine interoperability testing showed Iceberg achieving comparable performance across Spark, Trino, and Presto within 

ten percent variance reflecting its engine-agnostic design and mature connector implementations, Delta Lake queries in Trino 

showed thirty-five percent slower performance than Spark due to less optimized connector maturity, while Hudi support in Presto 

remained experimental with query planning taking multiple times longer than Spark equivalents and certain query types failing 

with compatibility errors. 

Operation Type Iceberg Performance 
Delta Lake 

Performance 
Hudi Performance Key Observations 

Bulk Ingestion 

Throughput 

Moderate throughput, 

efficient metadata 

The highest write 

throughput is maintained 

under concurrency 

Lowest for CoW, 

competitive for MoR 

Delta excels in initial 

loading scenarios 

Metadata Overhead 
Smallest footprint 

relative to data size 

Moderate overhead from 

transaction log 

Highest overhead 

with embedded 

metadata 

Iceberg most storage-

efficient 

Query Planning Time 
Fastest through the 

hierarchical structure 

Moderate with log 

scanning overhead 

Slowest due to 

timeline iteration 

Planning efficiency 

impacts interactive 

queries 

Partition Pruning 

Efficiency 

Highest data reduction 

via column statistics 

Competitive with 

partition-level pruning 

Moderate with 

coarser statistics 

Iceberg is superior for 

selective queries 

Streaming Write 

Latency 

Low latency with 

manifest updates 

Higher variance from 

checkpointing 

Lowest for MoR, 

highest for CoW 

Hudi MoR is optimal 

for streaming ingestion 

Update/Delete 

Throughput 
Moderate performance 

Moderate with file 

rewrites 

Highest for MoR with 

log appends 

Hudi excels in 

modification workloads 

Concurrent Write 

Scalability 

Exponential 

degradation beyond 

moderate concurrency 

Linear degradation with 

log contention 

Most stable with file-

level conflicts 

All formats struggle at 

extreme concurrency 
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Time Travel Access 
Instant, regardless of 

snapshot age 

Overhead scaling with 

snapshot age 

Variable with 

compaction impacts 

Iceberg immutable 

metadata is 

advantageous 

Cross-Engine 

Compatibility 

Comparable across 

Spark, Trino, Presto 

Slower in non-Spark 

engines 

Limited to 

experimental 

connectors 

Iceberg is most 

portable across 

engines 

Table 3: Performance Comparison Across Key Operations [7, 8] 

5. Discussion and Architectural Tradeoffs 

The observed performance characteristics stem directly from fundamental architectural decisions reflecting different design 

philosophies in distributed systems engineering. Iceberg's metadata-centric approach with its three-tier hierarchy optimizes for 

read performance and metadata evolution, enabling efficient pruning where only a small fraction of manifest files require 

evaluation for selective queries, proving optimal for read-heavy analytics workloads with moderate write concurrency and when 

cross-engine compatibility represents a critical requirement [8]. The immutability of Iceberg's metadata files provides strong 

consistency guarantees and efficient caching strategies, though manifest list updates require coordination that becomes 

contentious beyond moderate concurrency levels, suggesting this architecture performs best for workloads with high read-to-

write ratios exceeding ten-to-one, where cross-engine portability justifies somewhat higher write coordination complexity. 

Delta Lake's append-only transaction log architecture provides conceptual simplicity and strong consistency through a linearizable 

history of all table modifications, where every commit receives a unique sequence number establishing total ordering of operations 

[10]. This simplicity benefits operational teams by making table state reasoning straightforward and simplifying debugging of 

production issues, though checkpoint files that mitigate log scanning overhead introduce periodic performance variations during 

checkpoint creation, affecting workloads requiring consistent low-latency writes. The log's centralized nature creates a 

coordination point, becoming contentious under high write concurrency, explaining observed latency degradation at elevated 

concurrency levels, suggesting this approach suits organizations heavily invested in Spark ecosystems, prioritizing operational 

simplicity over extreme write scalability. 

Hudi's dual table type architecture enables workload-specific optimization where Merge-on-Read tables excel for streaming 

ingestion, achieving substantially lower write latency by deferring compaction, while Copy-on-Write tables offer simpler 

operational characteristics at the cost of write amplification [9]. This flexibility suits organizations with diverse workload 

requirements, willing to manage additional operational complexity, including compaction scheduling and timeline maintenance. 

The file-level conflict detection reduces coordination overhead under high concurrency, explaining observed lower conflict rates, 

but at the cost of more complex conflict resolution requiring a deeper understanding of timeline service mechanisms. Hudi 

concepts emphasize incremental processing and upsert patterns where record-level indexes enable efficient point updates, making 

the format particularly well-suited for streaming architectures requiring sub-hour data freshness. 

Format convergence trends reflect competitive dynamics where successful features propagate across implementations. Delta Lake 

introduced deletion vectors and liquid clustering, narrowing metadata efficiency gaps; Hudi adopted metadata tables providing 

hierarchical structures for improved query planning, and Iceberg implemented position deletes matching capabilities from 

competing formats. All three formats now support multi-table transactions through different implementation approaches, but 

provide comparable guarantees. Cross-engine ecosystem growth represents the most dramatic convergence, where Delta Lake's 

UniForm feature enables dual-format reads addressing Spark-centric limitations, major cloud providers announced multi-format 

support, reducing lock-in concerns, and connector maturity improved across Trino, Presto, and other engines for all formats. 

Beyond raw performance metrics, operational considerations significantly impact production deployment success. Iceberg's 

separate metadata layer simplifies monitoring through clear operational metrics while its immutable files enable straightforward 

backup strategies. Delta Lake's human-readable JSON transaction log significantly simplifies debugging and troubleshooting 

production issues while its straightforward write path reduces training requirements. Hudi's multiple file types increase monitoring 

complexity but provide extensive timeline information useful for auditing and compliance requirements. Cost implications vary 

based on format characteristics, where Iceberg's efficient metadata and aggressive file pruning reduce storage costs through a 

smaller metadata footprint and more effective data skipping, while Hudi Merge-on-Read tables without aggressive compaction 

incur higher storage costs due to log file proliferation, and compaction requirements add compute costs for maintaining optimal 

performance characteristics. 
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Format Optimal Use Cases Key Strengths Primary Limitations Best Fit Organizations 

Apache 

Iceberg 

Read-heavy 

analytics, cross-

engine workloads, 

high-cardinality 

partitions 

Superior query planning, 

instant time travel, best 

partition pruning, 

engine-agnostic design 

Manifest contention at 

high write concurrency, 

exponential degradation 

beyond 20 writers 

Multi-engine environments, 

read-to-write ratios >10:1, 

cloud-agnostic strategies 

Delta Lake 

Spark-centric 

pipelines, 

operational 

simplicity, bulk 

ingestion 

Highest write 

throughput, intuitive 

transaction log, 

operational simplicity, 

strong Spark integration 

Checkpoint overhead, 

slower non-Spark 

connectors (35% penalty), 

linear degradation under 

concurrency 

Spark-invested 

organizations, teams 

prioritizing simplicity over 

extreme scalability 

Apache Hudi 

Streaming upserts, 

modification-heavy 

workloads, sub-hour 

freshness 

Lowest streaming latency 

(MoR), highest update 

throughput, workload-

specific optimization 

Operational complexity, 

read amplification without 

compaction (3x penalty), 

experimental engine 

support 

Streaming architectures, 

CDC pipelines, and upsert-

intensive applications 

requiring write flexibility 

Table 4: Architectural Tradeoffs and Deployment Recommendations [9, 10] 

Conclusion 

This comprehensive empirical evaluation of Apache Iceberg, Delta Lake, and Apache Hudi at the terabyte scale reveals that table 

format selection involves nuanced tradeoffs rather than universally optimal choices across all dimensions. Iceberg emerged as the 

performance leader for read-heavy analytics workloads with superior query planning efficiency, exceptional partition pruning 

capabilities, and instant partition evolution through metadata-only operations. Its metadata-centric architecture and broad engine 

support, demonstrated through comparable performance across Spark, Trino, and Presto, make it optimal for organizations 

prioritizing cross-platform portability and read performance. However, manifest list coordination complexity under high write 

concurrency revealed scalability limitations requiring careful consideration for write-intensive workloads. Delta Lake demonstrated 

strengths in bulk ingestion throughput, operational simplicity through its intuitive transaction log design, and deep Spark 

ecosystem integration. Its straightforward operational model reduces cognitive load and training requirements while human-

readable JSON transaction logs simplify production debugging and troubleshooting. The format's ongoing convergence toward 

engine-agnostic design through UniForm addresses primary vendor lock-in limitations, though at modest write performance costs. 

The popularity of Delta Lake shows that market forces have already proven the simplicity-first design philosophy to be correct, 

and it can be readily used by organizations that have interests in Spark ecosystems, where operational simplicity is more highly 

valued than extreme write scalability or multi-engine portability. Hudi distinguished itself through write flexibility via dual table 

types, enabling workload-specific optimization. Merge-on-Read tables achieved the lowest write latency for streaming workloads 

and the highest update throughput, validating its architectural approach for upsert-heavy scenarios requiring sub-hour data 

freshness. However, this flexibility requires managing additional operational complexity, including compaction scheduling, timeline 

maintenance, and careful parameter tuning. Read amplification on uncompacted Merge-on-Read tables represents a significant 

consideration requiring disciplined operational practices. The formats demonstrate clear convergence across core capabilities, 

including ACID transactions with snapshot isolation, time travel functionality, schema evolution support, and multi-table 

transaction guarantees. Competitive dynamics drive rapid feature adoption where performance gaps narrow over time, reducing 

format lock-in risks and enabling organizations to potentially switch formats or maintain multiple formats simultaneously. This 

convergence suggests practitioners should prioritize workload-specific characteristics and ecosystem constraints over seeking 

universally best formats. The quantitative evaluation supports selecting Iceberg for read-heavy analytics with cross-engine 

requirements, Delta Lake for Spark-centric operational simplicity, and Hudi for streaming upsert workloads requiring write-read 

tradeoff flexibility. As lakehouse architectures mature into dominant paradigms for data platforms, understanding format 

characteristics becomes essential for building scalable, cost-effective infrastructure. Cost implications revealed substantial compute 

savings for selective query workloads and storage efficiency gains through effective metadata management, demonstrating that 

format selection carries direct financial implications at scale. 
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