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| ABSTRACT

The rapid adoption of open table formats has fundamentally transformed modern data engineering by enabling ACID
transactions, schema evolution, and time travel capabilities on cloud object storage systems. Apache Iceberg, Delta Lake, and
Apache Hudi represent the three dominant solutions that have emerged to address traditional data lake limitations, including a
lack of transactional guarantees, concurrent write challenges, and metadata management inefficiencies. This evaluation
conducts empirical benchmarking across terabyte-scale datasets to compare these formats across critical dimensions, including
metadata scalability, transaction isolation guarantees, concurrent write handling, compaction strategies, streaming consistency
semantics, and cross-engine interoperability. Testing scenarios encompass bulk ingestion throughput, incremental write latency,
selective query performance, time travel operations, schema evolution capabilities, and maintenance overhead under varying
concurrency levels. Results reveal that Iceberg excels in read-heavy analytics workloads with superior query planning efficiency
and cross-engine portability, Delta Lake demonstrates operational simplicity with strong Spark integration and the highest bulk
write throughput, while Hudi offers flexible write-read tradeoffs through dual table types optimized for streaming upserts.
Format convergence trends indicate rapid feature adoption across competing implementations, reducing vendor lock-in risks
and enabling organizations to select formats based on specific workload characteristics rather than seeking universally optimal
solutions. The article establishes quantitative foundations for practitioners navigating table format selection as lakehouse
architectures become the dominant paradigm for enterprise data platforms, with direct implications for infrastructure costs,
operational complexity, and analytical performance at scale.
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1. Introduction

The current data environment has undergone a paradigm shift due to the introduction of lakehouse architectures that consolidate
data warehousing and data lake functionality into a single architecture. Lakehouse methodology is a performance and structure-
based approach that integrates the performance and structure of data warehouses with the flexibility and cost-effectiveness of
data lakes and allows organizations to store all their data at a single location and to support various analytical workloads such as
business intelligence and machine learning [1]. This architectural evolution has been driven by the limitations of traditional two-
tier architectures, where data lakes stored raw data separately from data warehouses, creating complexity, data duplication, and
reliability challenges that hindered analytical capabilities.

Open table formats have emerged as the foundational technology enabling lakehouse implementations by providing ACID
transaction guarantees, schema evolution, time travel capabilities, and metadata management on top of cloud object storage
systems. Apache Iceberg, Delta Lake, and Apache Hudi represent the three dominant open table formats that have gained
significant traction across enterprise organizations. Microsoft Azure documentation emphasizes that the lakehouse paradigm
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delivers reliability and performance on data lakes through these open formats, enabling organizations to eliminate data silos and
reduce infrastructure complexity while maintaining enterprise-grade data management capabilities [5]. Although these formats
have been widely adopted and are increasingly of interest to various industries, there are few extensive empirical comparisons of
the formats under controlled and large-scale environments, both in the academic literature and in industry publications.

In this research, the critical gap can be bridged by performing rigorous performance tests on terabyte-scale datasets, the metadata
scalability, the scalability of transaction isolation, cross-engine interoperability, and cross-engine concurrent write handling. Our
methodology employs controlled benchmarking scenarios that simulate real-world production workloads, including bulk
ingestion, streaming writes, selective queries, and time travel operations. The findings provide quantitative insights into
architectural tradeoffs inherent in each format and establish a reference framework for organizations selecting long-term table
format strategies as they transition to lakehouse platforms.

2. Background and Architectural Foundations

The evolution of table formats represents a fundamental shift in how organizations approach large-scale data management on
cloud infrastructure. Traditional data lakes built on file formats like Parquet and ORC lacked essential database features, including
atomic operations, concurrent write support, and schema evolution capabilities. RCFile introduced columnar storage optimizations
for MapReduce-based systems, demonstrating how data placement structures significantly impact query performance through
improved compression ratios and reduced 1/O operations during analytical processing [3]. These early innovations established the
foundation for modern table formats by proving that metadata-driven approaches could dramatically enhance data lake
performance without sacrificing the flexibility of object storage systems.

Apache Iceberg addresses metadata scalability challenges through its three-tier hierarchical structure consisting of metadata files,
manifest lists, and manifest files that track data file locations and statistics. The technical documentation of Oracle points out that
the architecture of Iceberg provides efficient pruning of partitions, query planning in that it keeps column-level statistics and
supports the hidden schemes of partitioning, which facilitates evolution of partitions without rewriting of data [2]. The format uses
optimistic concurrency control with snapshot isolation guarantees, such that parallel readers and writers can co-exist without
conflicting reads or writes and have consistent views of table data. The storage-agnostic design of Iceberg does not provide explicit
specifications of a particular storage system or compute engine, allowing wide adoption across a wide range of different analytical
engines, such as Apache Spark, Apache Flink, Trino, and cloud-native query engines.

Delta Lake implements a transaction log architecture where all table modifications are recorded as ordered, immutable entries in
a centralized log stored alongside table data. The format documentation describes how Delta Lake provides ACID guarantees
through this log-based approach, with each commit receiving a monotonically increasing version number that establishes a total
ordering of all table operations [10]. Checkpointing mechanisms periodically consolidate the transaction log to prevent unbounded
growth and maintain efficient query planning performance. The format integrates deeply with Apache Spark's execution engine
and provides features including deletion vectors for efficient update operations, liquid clustering for automatic data optimization,
and UniForm capability enabling dual-format reads where tables written as Delta can be consumed as Iceberg tables by external
engines.

Apache Hudi distinguishes itself through its flexible architecture, offering two distinct table types that enable workload-specific
optimizations. Copy-on-Write tables rewrite entire data files during updates to maintain optimal read performance, while Merge-
on-Read tables append changes to log files for lower write latency at the cost of increased read complexity. The Hudi
documentation explains that this dual-mode approach allows organizations to tune their tables based on read-write ratio
requirements, with Merge-on-Read excelling for streaming ingestion scenarios and Copy-on-Write preferred for analytical
workloads prioritizing query performance [9]. The timeline service offered by Hudi has a global audit trail of table operations,
which facilitates incremental processing patterns and supports efficient upsert operations with record-level index structures. The
format offers configurable compaction policies that compromise write performance with storage efficiency and read latency,
allowing practitioners to exercise control over the operational properties.

The convergence of these formats reflects broader trends in distributed systems design, where competing approaches gradually
adopt successful features from one another. MapReduce systems evolved from simple batch processing frameworks into
sophisticated platforms supporting iterative algorithms and interactive queries through architectural innovations in metadata
management and query optimization [4]. Similarly, modern table formats continue evolving by incorporating complementary
capabilities while maintaining their core architectural philosophies, creating an ecosystem where format selection depends
increasingly on workload characteristics and organizational constraints rather than absolute technical superiority.
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Format Metadata Structure Transaction Model Storage Approach | Primary Design Goal

Three-tier hierarchy

Apach . .
pache (metadata files, manifest

Optimistic concurrency Complete separation |Read optimization and

Iceberg lists, manifests) with snapshot isolation of metadata and data |cross-engine portability
Centralized append-only i earizable log-based  [The transaction log is S perational Smniicit
Delta Lake [fransaction log commits with stored alongside the | ! simplicity
heckpointi 4 and Spark integration
with JSON entries checkpointing ata
Apache Hudi Timeline service with File-level conflict detection[Metadata embedded |Write flexibility and
P embedded metadata with dual modes within data layout streaming optimization

Table 1: Architectural Characteristics of Open Table Formats [3, 4]

3. Methodology and Experimental Design

The experimental methodology employed controlled benchmarking across terabyte-scale synthetic datasets designed to represent
common production workload patterns observed in enterprise data platforms. The benchmark environment utilized a dedicated
compute cluster with specifications chosen to eliminate resource bottlenecks that might obscure format-specific performance
characteristics. Dataset construction followed principles established in distributed database research, where synthetic data
generation enables reproducible experiments while capturing essential characteristics of real-world workloads, including skewed
distributions, temporal patterns, and high-cardinality dimensions.

The primary evaluation dataset consisted of five terabytes of e-commerce clickstream events with fifty billion individual records,
incorporating high-cardinality attributes representing user identifiers, session identifiers, and product catalog references. Temporal
partitioning by date and hour created thousands of leaf partitions reflecting typical production table structures where data arrives
continuously, and queries target specific time ranges. A secondary dataset modeled industrial loT sensor telemetry with three
terabytes of time-series measurements generated by simulated sensor networks, while a financial transaction dataset provided
two terabytes of structured records with monetary values and categorical attributes. These datasets enabled comprehensive
evaluation across diverse access patterns, including sequential scans, selective queries with complex predicates, and point lookups
requiring efficient metadata filtering.

Benchmark scenarios covered eight critical operational categories representing the full lifecycle of production table management.
Bulk ingestion testing measured initial data loading performance and metadata creation overhead under varying parallelism levels
from twenty to two hundred concurrent writers. Incremental write scenarios simulated streaming pipelines with micro-batches
arriving at regular intervals, evaluating steady-state write latency and throughput characteristics. Concurrent write testing assessed
transaction isolation and conflict resolution mechanisms by executing overlapping writes to shared partition ranges, measuring
conflict rates and retry behavior under increasing concurrency pressure. Read performance evaluation included full table scans
measuring raw throughput, selective queries testing predicate pushdown efficiency, and time travel operations accessing historical
shapshots to evaluate snapshot resolution overhead.

Schema evolution testing validated each format's capabilities for adding columns, promoting data types, and evolving partition
specifications, measuring both operation latency and impact on concurrent read-write workloads. Compaction testing addressed
the small file problem inherent in streaming ingestion by consolidating accumulated micro-batch files and measuring optimization
throughput alongside effects on concurrent operations. Cross-engine interoperability testing executed identical queries using
Apache Spark, Apache Flink, Trino, and Presto to evaluate format portability and connector maturity across diverse execution
engines. Instrumentation captured comprehensive metrics, including operation latency percentiles, resource utilization across CPU,
memory, and network dimensions, metadata overhead ratios, and cost-relevant factors such as object storage API request counts
that directly impact cloud infrastructure expenses.

The experimental design prioritized reproducibility and fair comparison by maintaining consistent cluster configurations, software
versions, and workload characteristics across all format evaluations. Each test scenario executed multiple iterations with statistical
analysis of results to account for measurement variance and ensure observed performance differences reflected genuine format
characteristics rather than environmental noise. This rigorous methodology provides quantitative foundations for understanding
architectural tradeoffs and operational implications of table format selection in production lakehouse deployments.
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Scenario Category Workload Description Primary Metrics Test Variations
Bulk Ingestion Initial data loading from source [Write throughput, metadata Parallelism levels range from
9 files overhead, planning time low to high concurrency
Continuous micro-batch End-to-end latency percentiles,

Incremental Writes Batch sizes and arrival intervals

streaming updates conflict rates

. Parallel writes to overlappin Conflict rate, retry behavior, and |Writer counts from minimal to
Concurrent Writers ppIng Y

partitions successful commits extreme concurrency
Sequential reads of complete  [Read throughput, plannin uery parallelism and cachin
Full Table Scans 9 P ghput, planning Q yPp 9
datasets overhead, execution time strategies
. . Predicate pushdown with Data scanned ratio, prunin Single partition, range filters,
Selective Queries e P . P g glep . 9
filtering efficiency complex predicates
Snapshot resolution time, Snapshot ages from recent to

Time Travel Queries [Historical snapshot access . .
Q P metadata reads historical

S chema Evolution Column additions, type changes, [Operation duration, backward [Different evolution types and

and partition evolution compatibility impacts
Compaction Small file consolidation and Compaction throughput, file Target file sizes and bin-
Operations optimization reduction, and impact packing strategies

Table 2: Benchmark Scenarios and Evaluation Metrics [5, 6]

4. Results and Performance Analysis

Performance evaluation revealed significant differences across formats in bulk ingestion throughput and metadata management
efficiency. Delta Lake demonstrated the highest write throughput during initial data loading, processing data substantially faster
than Iceberg, while Hudi Copy-on-Write showed the lowest baseline performance. The performance gap widened considerably
under high concurrency scenarios with one hundred concurrent writers, where Delta Lake maintained stable throughput while
Iceberg experienced degradation attributed to manifest list contention during parallel metadata updates. Metadata overhead
measurements confirmed Iceberg's efficiency in storage utilization, generating the smallest metadata footprint relative to total
data size, while Hudi's embedded metadata approach resulted in proportionally higher overhead. Partition handling characteristics
diverged notably for high-cardinality partitioned tables, where Iceberg's hidden partitioning architecture maintained consistent
performance regardless of partition count, whereas Delta Lake and Hudi exhibited performance degradation as partition cardinality
increased to thousands of leaf partitions.

Incremental write testing exposed distinct optimization strategies for streaming workloads and real-time data pipelines. Hudi
Merge-on-Read tables achieved the lowest write latency for micro-batch ingestion by appending delta records to log files without
rewriting base data files, followed by Iceberg with efficient manifest file updates, while Delta Lake showed higher latency variance
attributed to periodic checkpoint consolidation every ten commits. Streaming consistency evaluation using Apache Flink
demonstrated that all three formats successfully maintained exactly-once guarantees across extended test periods, though end-
to-end latency from source to queryable data varied significantly. Hudi Merge-on-Read achieved the fastest source-to-query
latency, while Delta Lake's Spark Structured Streaming integration exhibited approximately twenty percent higher latency due to
micro-batch coordination overhead. Update and delete performance testing revealed Hudi's architectural advantages for
modification-heavy workloads, processing substantially more updates per second compared to Iceberg and Delta Lake, though
read amplification on Merge-on-Read tables without recent compaction penalized query performance by factors approaching
three times baseline measurements.

Concurrent write handling revealed fundamental differences in transaction coordination strategies and scalability limits. At
moderate concurrency with five parallel writers, all formats maintained minimal conflict rates below one percent with fast retry
resolution. Increasing to ten concurrent writers exposed observable conflicts where Iceberg's optimistic concurrency control
showed conflicts in the low single-digit percentage range with sub-second retry resolution, while Delta Lake exhibited slightly
lower conflict rates but slower retry times attributed to transaction log validation overhead, and Hudi demonstrated the lowest
conflict rate with longer resolution times reflecting its file-level conflict detection granularity. Beyond twenty concurrent writers,
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all formats experienced performance degradation with distinct characteristics where Iceberg's manifest management became a
bottleneck, showing exponential latency growth, Delta Lake's centralized transaction log created contention with more linear
degradation, and Hudi maintained relatively stable throughput but required careful file sizing parameter tuning to avoid timeline
service bottlenecks.

Read performance analysis demonstrated that full table scan throughput remained comparable across formats within single-digit
percentage differences, all bounded by object storage bandwidth limitations rather than format-specific characteristics. However,
query planning time showed substantial divergence, where Iceberg averaged the fastest planning for large tables through its
hierarchical metadata structure, Delta Lake required additional time for transaction log scanning from the last checkpoint, and
Hudi needed the longest planning duration due to timeline-based file discovery requiring iteration through commit history.
Predicate pushdown efficiency testing revealed Iceberg's superior partition pruning capabilities, achieving the highest data
reduction percentages through column-level statistics stored in manifest files, while Delta Lake achieved competitive but slightly
lower reduction through partition pruning with file-level statistics, and Hudi demonstrated the least aggressive pruning due to
coarser-grained statistics in timeline metadata.

Time travel query performance highlighted architectural implications where Iceberg's immutable metadata files enabled instant
access to historical snapshots regardless of age with no observable planning time overhead, Delta Lake's incremental transaction
log required scanning from last checkpoint to target timestamp adding latency that scaled with snapshot age, and Hudi's timeline
compaction occasionally impacted historical reads when archival had occurred between snapshot creation and query execution.
Cross-engine interoperability testing showed Iceberg achieving comparable performance across Spark, Trino, and Presto within
ten percent variance reflecting its engine-agnostic design and mature connector implementations, Delta Lake queries in Trino
showed thirty-five percent slower performance than Spark due to less optimized connector maturity, while Hudi support in Presto
remained experimental with query planning taking multiple times longer than Spark equivalents and certain query types failing
with compatibility errors.

Delta Lake

Hudi Performance
Performance

Operation Type |Iceberg Performance Key Observations

The highest write
throughput is maintained
under concurrency

Delta excels in initial
loading scenarios

Lowest for CoW,
competitive for MoR

Bulk Ingestion
Throughput

Moderate throughput,
efficient metadata

Highest overhead
ith embedded
metadata

Moderate overhead from
transaction log

Smallest footprint
relative to data size

Iceberg most storage-

Metadata Overhead ..
efficient

Planning efficiency

Fastest through the Moderate with log Slowest due to

Query Planning Time

hierarchical structure

scanning overhead

timeline iteration

impacts interactive
queries

Partition Pruning
Efficiency

Highest data reduction
via column statistics

Competitive with
partition-level pruning

Moderate with
coarser statistics

Iceberg is superior for
selective queries

Streaming Write
Latency

Low latency with
manifest updates

Higher variance from
checkpointing

Lowest for MoR,
highest for CoW

Hudi MoR is optimal
for streaming ingestion

Update/Delete
Throughput

Moderate performance

Moderate with file
rewrites

Highest for MoR with
log appends

Hudi excels in
modification workloads

Concurrent Write
Scalability

Exponential
degradation beyond
moderate concurrency

Linear degradation with
log contention

Most stable with file-
level conflicts

All formats struggle at
extreme concurrency
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. . . . Iceberg immutable
. Instant, regardless of  |Overhead scaling with  |Variable with g1m
Time Travel Access S metadata is
snapshot age snapshot age compaction impacts
advantageous
. . Limited to Iceberg is most
Cross-Engine Comparable across Slower in non-Spark . 9
e . . experimental portable across
Compatibility Spark, Trino, Presto engines .
connectors engines

Table 3: Performance Comparison Across Key Operations [7, 8]

5. Discussion and Architectural Tradeoffs

The observed performance characteristics stem directly from fundamental architectural decisions reflecting different design
philosophies in distributed systems engineering. Iceberg's metadata-centric approach with its three-tier hierarchy optimizes for
read performance and metadata evolution, enabling efficient pruning where only a small fraction of manifest files require
evaluation for selective queries, proving optimal for read-heavy analytics workloads with moderate write concurrency and when
cross-engine compatibility represents a critical requirement [8]. The immutability of Iceberg's metadata files provides strong
consistency guarantees and efficient caching strategies, though manifest list updates require coordination that becomes
contentious beyond moderate concurrency levels, suggesting this architecture performs best for workloads with high read-to-
write ratios exceeding ten-to-one, where cross-engine portability justifies somewhat higher write coordination complexity.

Delta Lake's append-only transaction log architecture provides conceptual simplicity and strong consistency through a linearizable
history of all table modifications, where every commit receives a unique sequence number establishing total ordering of operations
[10]. This simplicity benefits operational teams by making table state reasoning straightforward and simplifying debugging of
production issues, though checkpoint files that mitigate log scanning overhead introduce periodic performance variations during
checkpoint creation, affecting workloads requiring consistent low-latency writes. The log's centralized nature creates a
coordination point, becoming contentious under high write concurrency, explaining observed latency degradation at elevated
concurrency levels, suggesting this approach suits organizations heavily invested in Spark ecosystems, prioritizing operational
simplicity over extreme write scalability.

Hudi's dual table type architecture enables workload-specific optimization where Merge-on-Read tables excel for streaming
ingestion, achieving substantially lower write latency by deferring compaction, while Copy-on-Write tables offer simpler
operational characteristics at the cost of write amplification [9]. This flexibility suits organizations with diverse workload
requirements, willing to manage additional operational complexity, including compaction scheduling and timeline maintenance.
The file-level conflict detection reduces coordination overhead under high concurrency, explaining observed lower conflict rates,
but at the cost of more complex conflict resolution requiring a deeper understanding of timeline service mechanisms. Hudi
concepts emphasize incremental processing and upsert patterns where record-level indexes enable efficient point updates, making
the format particularly well-suited for streaming architectures requiring sub-hour data freshness.

Format convergence trends reflect competitive dynamics where successful features propagate across implementations. Delta Lake
introduced deletion vectors and liquid clustering, narrowing metadata efficiency gaps; Hudi adopted metadata tables providing
hierarchical structures for improved query planning, and Iceberg implemented position deletes matching capabilities from
competing formats. All three formats now support multi-table transactions through different implementation approaches, but
provide comparable guarantees. Cross-engine ecosystem growth represents the most dramatic convergence, where Delta Lake's
UniForm feature enables dual-format reads addressing Spark-centric limitations, major cloud providers announced multi-format
support, reducing lock-in concerns, and connector maturity improved across Trino, Presto, and other engines for all formats.

Beyond raw performance metrics, operational considerations significantly impact production deployment success. Iceberg's
separate metadata layer simplifies monitoring through clear operational metrics while its immutable files enable straightforward
backup strategies. Delta Lake's human-readable JSON transaction log significantly simplifies debugging and troubleshooting
production issues while its straightforward write path reduces training requirements. Hudi's multiple file types increase monitoring
complexity but provide extensive timeline information useful for auditing and compliance requirements. Cost implications vary
based on format characteristics, where Iceberg's efficient metadata and aggressive file pruning reduce storage costs through a
smaller metadata footprint and more effective data skipping, while Hudi Merge-on-Read tables without aggressive compaction
incur higher storage costs due to log file proliferation, and compaction requirements add compute costs for maintaining optimal
performance characteristics.
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Format Optimal Use Cases Key Strengths Primary Limitations Best Fit Organizations
Read-heav: . . . .
. y Superior query planning, [Manifest contention at . . .
analytics, cross- . . . . Multi-engine environments,
Apache ; instant time travel, best [high write concurrency, . .
engine workloads, o . . ; read-to-write ratios >10:1,
Iceberg . - partition pruning, exponential degradation . .
high-cardinality . . . . cloud-agnostic strategies
o lengine-agnostic design [beyond 20 writers
partitions
Spark-centric Highest write Checkpoint overhead, .
.p . 9 L P Spark-invested
pipelines, throughput, intuitive slower non-Spark s
: X o organizations, teams
Delta Lake operational transaction log, connectors (35% penalty), | 7 ..~ S
I . e . . prioritizing simplicity over
simplicity, bulk operational simplicity,  [linear degradation under S
. . . . extreme scalability
ingestion strong Spark integration |concurrency
. . Operational complexity, . .
Streaming upserts, [Lowest streaming latency . . Streaming architectures,
I . read amplification without LT
. [modification-heavy |(MoR), highest update . CDC pipelines, and upsert-
IApache Hudi compaction (3x penalty), |. . .
workloads, sub-hourjthroughput, workload- . . intensive applications
i L experimental engine o ) L
freshness specific optimization requiring write flexibility
support
Table 4: Architectural Tradeoffs and Deployment Recommendations [9, 10]
Conclusion

This comprehensive empirical evaluation of Apache Iceberg, Delta Lake, and Apache Hudi at the terabyte scale reveals that table
format selection involves nuanced tradeoffs rather than universally optimal choices across all dimensions. Iceberg emerged as the
performance leader for read-heavy analytics workloads with superior query planning efficiency, exceptional partition pruning
capabilities, and instant partition evolution through metadata-only operations. Its metadata-centric architecture and broad engine
support, demonstrated through comparable performance across Spark, Trino, and Presto, make it optimal for organizations
prioritizing cross-platform portability and read performance. However, manifest list coordination complexity under high write
concurrency revealed scalability limitations requiring careful consideration for write-intensive workloads. Delta Lake demonstrated
strengths in bulk ingestion throughput, operational simplicity through its intuitive transaction log design, and deep Spark
ecosystem integration. Its straightforward operational model reduces cognitive load and training requirements while human-
readable JSON transaction logs simplify production debugging and troubleshooting. The format's ongoing convergence toward
engine-agnostic design through UniForm addresses primary vendor lock-in limitations, though at modest write performance costs.
The popularity of Delta Lake shows that market forces have already proven the simplicity-first design philosophy to be correct,
and it can be readily used by organizations that have interests in Spark ecosystems, where operational simplicity is more highly
valued than extreme write scalability or multi-engine portability. Hudi distinguished itself through write flexibility via dual table
types, enabling workload-specific optimization. Merge-on-Read tables achieved the lowest write latency for streaming workloads
and the highest update throughput, validating its architectural approach for upsert-heavy scenarios requiring sub-hour data
freshness. However, this flexibility requires managing additional operational complexity, including compaction scheduling, timeline
maintenance, and careful parameter tuning. Read amplification on uncompacted Merge-on-Read tables represents a significant
consideration requiring disciplined operational practices. The formats demonstrate clear convergence across core capabilities,
including ACID transactions with snapshot isolation, time travel functionality, schema evolution support, and multi-table
transaction guarantees. Competitive dynamics drive rapid feature adoption where performance gaps narrow over time, reducing
format lock-in risks and enabling organizations to potentially switch formats or maintain multiple formats simultaneously. This
convergence suggests practitioners should prioritize workload-specific characteristics and ecosystem constraints over seeking
universally best formats. The quantitative evaluation supports selecting Iceberg for read-heavy analytics with cross-engine
requirements, Delta Lake for Spark-centric operational simplicity, and Hudi for streaming upsert workloads requiring write-read
tradeoff flexibility. As lakehouse architectures mature into dominant paradigms for data platforms, understanding format
characteristics becomes essential for building scalable, cost-effective infrastructure. Cost implications revealed substantial compute
savings for selective query workloads and storage efficiency gains through effective metadata management, demonstrating that
format selection carries direct financial implications at scale.
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