Journal of Computer Science and Technology Studies
ISSN: 2709-104X]CSTS

DOI: 10.32996/jcsts AL-KINDI CENTER FOR RESEARCH
Journal Homepage: www.al-kindipublisher.com/index.php/jcsts AND DEVELOPMENT
| RESEARCH ARTICLE

Software Engineering Practices: In the era of Al / LLMs

Ashif Anwar
Independent Researcher, USA
Corresponding Author: Ashif Anwar, E-mail: reachaanwar@gmail.com

| ABSTRACT

The software development landscape is going through a major shift as generative artificial intelligence (Al) tools, including code
assistants and autonomous agents, become increasingly widespread. Recent industry surveys indicate that more than 75% of
developers currently use or plan to adopt Al-based solutions, with approximately half of professional developers utilizing these
tools daily. Furthermore, organizational adoption is nearly universal, with reports suggesting that over 97% of companies
incorporate Al into their development workflows for tasks such as code generation, documentation, code review, and automated
testing. The anticipated benefits of these technologies are considerable. Empirical studies report productivity gains of up to 50%
in coding speed and 33% in code refactoring efficiency. However, these advantages are accompanied by notable risks. Al-
generated code can propagate security vulnerabilities and exacerbate technical debt. Moreover, evidence from a 2025
randomized controlled trial (RCT) shows that experienced developers using Al assistants were, on average, 19% slower when
completing real-world programming tasks, challenging the assumption of universal efficiency gains. This paper discusses the
current state of generative Al adoption in software engineering and synthesizes best practices for employing its potential while
controlling associated risks. Following the structure recommended by the Journal of Computer Science and Technology Studies,
the discussion is organized into the following sections: Introduction, Literature Review, Methodology, Results and Findings,
Conclusion, Statements and Declarations, and References [11].

| KEYWORDS
Generative Al; Software Development; Al Augmented SDLC; Best Practices; Developer Productivity; Al Ethics

| ARTICLE INFORMATION

ACCEPTED: 20 December 2025 PUBLISHED: 29 December 2025 DOI: 10.32996/jcsts.2025.7.12.57

1. Introduction

Generative Al models built on large language models (LLMs) have demonstrated the ability to produce coherent text, executable
code, and even system-level designs. Since the introduction of tools like GitHub Copilot and ChatGPT, software teams have
progressively embraced Al to accelerate their development workflows. By late 2023, surveys reported that approximately 75% of
developers were using Al-powered code assistants, with LLM-based tools reducing routine programming time by nearly 50% [3].
Novel paradigms such as chat-oriented programming (CHOP), vibe coding, and agentic programming have emerged, permitting
developers to interact with conversational agents rather than writing code manually [3].

Adoption intensified in 2024 and 2025. A Techreviewer survey in 2025 revealed that 97.5% of organizations integrated Al into at
least one stage of the software development life cycle (SDLC) [2]. Similarly, the Stack Overflow Developer Survey 2025 found that
84% of respondents were using or planning to use Al tools, with 50.6% of professional developers employing them daily [1]. Today,
Al permeates the SDLC from natural language requirements analysis to automated test generation and deployment scripting.
Nevertheless, advances and still unresolved obstacles continue. Al-generated code can appear correct yet contain subtle errors,
replicate outdated or insecure patterns [4], and encourage copy-paste practices that increase technical debt [5]. Operational
outlays are also rising; the computational expense of large models grew by 89% between 2023 and 2025 [3]. Furthermore, issues
of intellectual property, privacy, and accountability are still controversial [7]. Empirical evidence suggests productivity gains are not

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.
Page | 521

Software Engineering Practices: In the era of Al / LLMs

universal: a randomized controlled trial in early 2025 found that experienced open-source developers using Al assistants were 19%
slower on real-world tasks [6].

To achieve sustainable benefits, organizations must integrate Al within established engineering practices such as version control,
test-driven development, code review, and continuous integration/deployment [8]. This study combines findings from academic
literature, industry surveys, and reports published between 2023 and late 2025. We identify the areas where Al has the greatest
impact, highlight associated risks and trade-offs, and propose best practices for responsible adoption. Additionally, we present
original visualizations illustrating Al adoption trends and its augmentation of traditional development phases.

2. Literature Review
2.1 Al Adoption and Integration Across the SDLC

Early studies documented the rapid uptake of Al coding assistants. Generative Al and the Transformation of Software Development
Practices reported that by mid-2023, approximately 75% of developers were using Al tools, attaining up to 50% faster coding and
33% faster refactoring, while introducing paradigms such as chat-oriented programming and agentic programming [3]. The
DFKI/Accenture study additionally highlighted that Al influences every phase of the software development life cycle (SDLC).
Activities traditionally performed by humans, such as requirements extraction, design, and testing, can now be partially automated,
authorizing programmers to concentrate on higher-level tasks, including problem formulation, orchestration, and supervision [7].

Industry surveys reinforce this evidence. The Techreviewer 2025 survey revealed that 97.5% of companies have integrated Al into
their development workflows, leaving only 2.5% yet to adopt [2]. Adoption is particularly strong in code generation (72.2%),
documentation (67.1%), code review (67.1%), automated testing/debugging (55.7%), and requirements analysis/design (53.2%) [2].
Notably, the same report points out that Al use has expanded upstream, with more than half of companies now employing Al for
requirements analysis and design, activities that require context-sensitive comprehension [2]. Similarly, the Stack Overflow
Developer Survey 2024 indicated that 76% of developers used or planned to use Al tools, with 62% already using them [9]. By
2025, these figures rose further, as 84% of respondents reported using or planning to use Al, and 51% of professional developers
used Al tools daily [1].

2.2 Benefits and Emerging Paradigms

Developers embrace Al because it accelerates mundane tasks and supports creative workflows. GitHub's internal research, cited in
the Stack Hawk blog, reports that Al assistants enable engineers to complete routine tasks 55% faster [4]. Early studies noted
improved work rate and boosted developer satisfaction. New paradigms such as chat-oriented programming, vibe coding, and
agentic programming encourage developers to articulate intent in natural language and rely on Al agents to generate or modify
code [3]. High-performing organizations described by McKinsey embed Al across the entire product development life cycle and
develop Al-native roles (e.g., prompt engineers, Al product owners) to orchestrate multi-agent systems [10]. These companies
measure impact carefully and provide upskilling programs to ensure their workforce can effectively use Al [10].

2.3 Risks and Challenges

Despite large-scale adoption, Al brings major risks. Security vulnerabilities are a central concern: Al models sometimes generate
insecure code, import vulnerable dependencies, or replicate anti-patterns [4]. The StackHawk report warns that traditional security
reviews cannot keep pace with the speed at which Al produces code [4]. Furthermore, Al tools may increase code churn and
technical debt by encouraging copy-and-paste behaviors [5]. Credibility and liability are unresolved, as generative models
occasionally hallucinate functionality or produce legally uncertain outputs, and the cost of training and operating large models
rose by nearly 89% between 2023 and 2025 [3].

Empirical evidence of productivity gains is also mixed. While many developers perceive Al as a driver of speed, a 2025 randomized
controlled trial (RCT) involving 16 experienced open-source developers found that allowing Al assistance slowed developers by
19% on real issues [6]. Participants anticipated a 24% speedup but still believed they had been faster, even when they were slower,
highlighting a gap between perception and reality [6]. This study shows that Al can introduce overhead when developers need to
validate, debug, or rework Al-generated suggestions. It highlights the need for thorough evaluation and integration with
established engineering processes.

2.4 Best Practices in Traditional Software Engineering

High-quality software development relies on structured workflows. Version control systems such as Git, along with structured
branching and merging strategies, enable teams to track changes, collaborate, and roll back when necessary [8]. Test-driven
development (TDD) advocates writing failing tests before implementing functionality and refactoring after tests pass, guaranteeing

Page | 522

JCSTS 7(12): 521-525

that code meets requirements and remains maintainable [8]. Code reviews and pair programming promote knowledge sharing
and catch defects early [8]. Continuous Integration/Continuous Deployment (Cl/CD) automates building, testing, and deployment,
enabling frequent releases whilst upholding quality [8]. Agile and iterative development emphasize small, incremental
improvements and close partnership with stakeholders [8]. Clean code and refactoring practices focus on readability and
maintainability [8], and automated testing strategies, including unit, integration, and system tests, catch defects early and support
continuous delivery [8].

3. Methodology

This paper adopts a multi-faceted approach strategy that combines a systematic literature review with descriptive analyses of
recent surveys and reports. academic repositories such as arXiv and the ACM Digital Library, as well as industry sources including
Techreviewer, Stack Overflow, McKinsey, DFKI/Accenture, StackHawk, DevOps.com, and METR, were searched for publications
published between January 2023 and December 2025. Search terms included “generative Al," “software engineering,” “code
assistant,” “Al adoption,” “productivity,” “security,” and “best practices.” Sources were selected if they provided quantitative data
on Al adoption or qualitative observations regarding its impact on software development. In total, over twenty publications were
reviewed, but only those relevant to adoption, productivity, risks, and best practices were synthesized.

non

non

Original diagrams were created to visualize Al augmentation of the SDLC and adoption trends across use cases. Data for the
adoption chart were extracted from the Techreviewer 2025 survey and the Stack Overflow Developer Survey 2024-2025 [2][1]. The
diagrams were generated using Python’s Matplotlib library and are included as figures in the Results section.

4. Results/Findings
4.1 Al-Augmented Software Development Life Cycle

The classical SDLC comprises six phases: requirements analysis, design and architecture, implementation, testing, deployment, and
maintenance. Figure 1 illustrates how Al augments each phase. During requirements analysis, natural language processing (NLP)
models extract user stories, generate acceptance criteria, and detect ambiguities. In design, generative models put forward
architectures, design patterns, and user interface layouts. Implementation is the most widely adopted phase, where Al code
assistants generate boilerplate code, suggest completions, and refactor functions. In testing, Al generates unit tests, identifies edge
cases, and performs fuzzing. Deployment benefits from Al-enabled infrastructure-as-code scripts, anomaly detection, and
automated rollback strategies, while maintenance leverages Al for log analysis, automated bug triage, and self-healing.
Nonetheless, benefits, human monitoring remains vital to validate Al outputs, align solutions with corporate aims, and ensure
ethical and secure outcomes.

Al Integration Across the Software Development Life Cycle

Natural language Model-based design Code generation & Test case Automated Self-healing
reguirement extraction suggestions autocomplete generation deployment scripts & menitering

Requirements Design

Analysis & Architecture Implementation Testing Deployment Maintenance

Fig 1: Al integration across the software development life cycle (SDLC).
4.2 Al Adoption Across Use Cases (2024 vs 2025)

Figure 2 compares adoption rates for major Al use cases between 2024 and 2025. Data from the Techreviewer survey shows that
code generation remains the most common use case, adopted by about 72% of companies in 2025 [2]. Documentation generation
and code review/optimization saw significant increases, indicating the shift toward Al-assisted knowledge management.
Automated testing/debugging and requirements analysis/design also grew, signaling that Al adoption is moving upstream in the

Page | 523

Software Engineering Practices: In the era of Al / LLMs

SDLC. A small “Other” category includes tasks such as DevOps automation, Ul/UX optimization, and predictive analytics [2]. When
compared with the Stack Overflow survey, which showed that 84% of developers are using or planning to use Al tools [1], the
figures suggest that organizations are integrating Al comprehensively and that individual developers are increasingly comfortable
relying on Al for various tasks.

Al Adoption Across Software Development Use Cases (2024 vs 2025)

72.2%

70 A 67.5% 67.1% 67.1% = 2025
. 2024

38.0%

13.9%

Percentage of companies using Al (%)

5.0%

0.0% 0.0%

Fig 2: Al adoption across software engineering use cases in 2024 and 2025.
4.3 Productivity Effects and Developer Experience

Survey respondents generally report positive productivity impacts from Al, though experiences vary. In GitHub's study, developers
performed routine tasks 55% faster with Al assistants [4]. The generative Al paper observed 50% faster coding and 33% faster
refactoring [3]. Conversely, the METR RCT found that experienced developers were 19% slower when allowed to use Al tools [6].
This slowdown might be explained by time spent interpreting Al suggestions, debugging hallucinated code, and aligning Al output
with project settings [6]. The discrepancy between benchmark results and actual usage underscores the need for more nuanced
assessment criteria.

Al also affects developer morale and satisfaction. Some developers appreciate Al's ability to handle mundane tasks, leaving them
to focus on higher-level design and problem-solving. Others show irritation when Al suggestions require significant rewriting or
introduce subtle bugs. The Stack Overflow 2025 survey reported that, despite high adoption, favorable sentiment toward Al
decreased from over 70% in 2023-2024 to about 60% in 2025, suggesting that expectations are being recalibrated [1].

4.4 Security, Quality and Best Practices

Al-generated code may omit secure code development standards, include vulnerable dependencies, or replicate anti-patterns [4].
To handle these risks, security researchers recommend configuring Al tools with security rules, performing automated security
testing, and integrating security scanning into Cl/CD pipelines [4]. DevOps practitioners caution that Al code assistants can increase
code churn and accelerate the accumulation of technical debt, so teams should set clear quality guidelines, adopt strong
automated testing, establish feedback loops to improve prompts, and evaluate Al output utilizing metrics beyond lines of code
[5]. Education is fundamental: developers must understand Al's limitations, avoid excessive dependence on generated code, and
refine prompts to obtain better results.

Integrating Al into traditional practices requires adaptation. Version control and structured Git workflows remain fundamental for
managing Al-generated code and enabling collaborative review [8]. Test-driven development should be extended to verify Al-
generated code against pre-written tests [8]. Code reviews and pair programming are essential for validating Al suggestions and
for sharing knowledge [8]. Continuous Integration and Deployment should automate the testing of Al-produced artifacts and
support rapid iteration [8]. Agile methods provide the leeway to innovate with Al tools and adjust processes based on feedback
[8]. These practices create guardrails that help teams harness Al's speed whilst preserving quality and security.

5. Conclusion

Page | 524

JCSTS 7(12): 521-525

Generative Al has transitioned from novelty to mainstream adoption in software engineering. Surveys show overwhelming use of
Al tools, with nearly every organization integrating them into at least one development phase and more than half of professional
developers using Al daily [2][1]. Al assists across the SDLC, from requirements analysis to maintenance, and accelerates tasks such
as code generation, testing, and documentation. The gains are considerable: productivity gains of up to 50%, new programming
paradigms, and avenues for creativity. However, these advantages come with caveats. Empirical evidence reveals that Al does not
always accelerate development—an early 2025 RCT found a 19% slowdown [6]—and Al-generated code may contain vulnerabilities
[4] or increase technical debt [5]. The field also faces unresolved ethical and judicial questions and escalating computing costs [3].

To handle this era, software teams must integrate Al within established engineering frameworks. Version control, test-driven
development, code review, continuous integration and deployment, agile methods, refactoring, and automated testing provide
guardrails that ensure Al-augmented development persists as secure, reliable, and maintainable [8]. Organizations should train
developers to use Al responsibly, configure tools with security rules, and measure the impact of Al adoption on quality and speed
[10][5]. Researchers should conduct further studies to understand long-term productivity effects and develop benchmarks that
represent real-world developer workflows. By combining Al's strengths with disciplined engineering practices, the software
community can utilize generative Al to build better, safer, and more innovative systems.

Statements and Declarations

Funding: This research received no external funding.

Conflicts of Interest: This author declares no conflict of interest.

ORCID ID: 0009-0002-1009-3864

Acknowledgements: The author thanks the creators of open-source data and surveys used in this work.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editors and the reviewers.

References

[1] Stack Overflow. (2025). 2025 developer survey: Al section. Stack Overflow.

https://survey.stackoverflow.co/2025/ai

[2] Techreviewer. (2025). Al in software development 2025: From exploration to accountability.

A global survey analysis. Techreviewer. https://techreviewer.co/blog/ai-in-software-development-2025-from-exploration-to-
accountability-a-global-survey-analysis

[3] Acharya, V. (2025). Generative Al and the transformation of software development practices (arXiv No. 2510.10819). arXiv.
https://doi.org/10.48550/arXiv.2510.10819

[4] StackHawk. (2025). Secure Al development: Balancing speed & code security. StackHawk Blog.
https://www.stackhawk.com/blog/secure-ai-software-development/

[5] DevOps.com. (2025). Best of 2025: Al in software development: Productivity at the cost of code quality? DevOps.com.
https://devops.com/ai-in-software-development-productivity-at-the-cost-of-code-quality-2/

[6] Becker, O, Singer, J., & MacEwen, J. (2025). Measuring the impact of early-2025 Al on experienced open-source developer
productivity: A randomized controlled trial. METR. https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
[7] Accenture & German Research Center for Artificial Intelligence (DFKI). (2025). Generative Al in software engineering:
Transforming the software development process. Accenture & DFKI.
https://www.dfki.de/fileadmin/user upload/DFKI/Medien/News/2025/Wissenschaftliche Exzellenz/Generative Al in Software En
gineering Transforming the Software Development Process 2025.pdf

[8] Zest. (2025). Top software engineering best practices for 2025. Zest Blog. https://meetzest.com/blog/software-engineering-
best-practices

[9] Stack Overflow. (2024). 2024 developer survey: Al section. Stack Overflow. https://survey.stackoverflow.co/2024/ai

[10] McKinsey & Company. (2025). The state of Al in 2025: Agents, innovation, and transformation.
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai

[11] Lamm, D. V., & Reed, T. (2010). Demographics of the Contracting Workforce within the Army Contracting Command.
https://core.ac.uk/download/36726431.pdf

Page | 525

https://techreviewer.co/blog/ai-in-software-development-2025-from-exploration-to-accountability-a-global-survey-analysis
https://techreviewer.co/blog/ai-in-software-development-2025-from-exploration-to-accountability-a-global-survey-analysis
https://doi.org/10.48550/arXiv.2510.10819
https://www.stackhawk.com/blog/secure-ai-software-development/
https://devops.com/ai-in-software-development-productivity-at-the-cost-of-code-quality-2/
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://www.dfki.de/fileadmin/user_upload/DFKI/Medien/News/2025/Wissenschaftliche_Exzellenz/Generative_AI_in_Software_Engineering_Transforming_the_Software_Development_Process_2025.pdf
https://www.dfki.de/fileadmin/user_upload/DFKI/Medien/News/2025/Wissenschaftliche_Exzellenz/Generative_AI_in_Software_Engineering_Transforming_the_Software_Development_Process_2025.pdf
https://meetzest.com/blog/software-engineering-best-practices
https://meetzest.com/blog/software-engineering-best-practices
https://survey.stackoverflow.co/2024/ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai

