
Journal of Computer Science and Technology Studies  

ISSN: 2709-104X   

DOI: 10.32996/jcsts 

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts 

   JCSTS 
AL-KINDI CENTER FOR RESEARCH  

AND DEVELOPMENT  

 

 

Copyright: © 2024 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

    Page | 350  

| RESEARCH ARTICLE 

Retrieval-Augmented Generation (RAG) Systems: Architectures, Strategies, and 

Evaluation 

 
Sunil Karthik Kota 

Engineering Leader, Software Architect,  AI & Automation Expert at CISCO, USA  

Corresponding Author: Sunil Karthik Kota E-mail: kotasunilkarthik@gmail.com 

 

| ABSTRACT 

Retrieval-Augmented Generation (RAG) systems have revolutionized the way large language models (LLMs) synthesize responses 

by coupling generative capabilities with dynamic retrieval from external knowledge bases. This integration not only enhances the 

factual accuracy and contextual relevance of responses but also reduces the potential for hallucination in generated content. In 

this paper, we present an extensive survey of RAG systems, covering theoretical underpinnings, various retrieval strategies, 

agentic architectures, and the technical developer stack necessary for system integration. Additionally, we detail advanced 

techniques for fine-tuning embedding and reranker models and establish comprehensive evaluation metrics applicable to both 

retrieval and generation components. This document synthesizes methods and best practices described in recent research 

articles [1]–[10], offering a roadmap for researchers and practitioners to design robust, efficient, and scalable RAG systems. 

| KEYWORDS 

Retrieval-Augmented Generation, RAG, Embedding Models, Reranker Fine-Tuning, Semantic Retrieval, Agentic Architectures, 

Evaluation Metrics, Vector Databases, Query Routing, Dynamic Context. 

| ARTICLE INFORMATION 

ACCEPTED: 01 December 2024            PUBLISHED: 25 December 2024               DOI: 10.32996/jcsts.2024.6.5.30 

 

1. Introduction 

The advent of Retrieval-Augmented Generation (RAG) marks a paradigm shift in natural language processing by combining the 

strengths of pre-trained language models with external retrieval mechanisms. Traditional generative models rely solely on 

learned parameters, which sometimes leads to outputs that are either outdated or contain hallucinated content. RAG systems 

address these shortcomings by incorporating real-time retrieval processes that fetch relevant contextual data from structured 

and unstructured knowledge bases. 

In high-stakes environments—ranging from legal research and healthcare support to technical troubleshooting and customer 

service—the integration of context retrieval into language generation is critical. Researchers have demonstrated that leveraging 

dense and sparse retrieval techniques enhances the factual grounding of generated outputs while simultaneously mitigating 

errors associated with model hallucinations [1]. Furthermore, innovative agentic architectures enable dynamic routing of user 

queries among specialized subsystems, thereby tailoring the retrieval strategy to the specific needs of the query [2]. 

This document presents an in-depth technical overview of RAG systems, with detailed discussions on retrieval methods, agentic 

designs, and the supporting developer ecosystem. We review fine-tuning processes for both embedding and reranker models 

and propose evaluation methodologies that measure system performance across retrieval precision, response relevancy, and 

overall efficiency. Our treatment is grounded in the latest advances from multiple studies [1]–[10]. 



JCSTS 6(5): 350-358 

 

Page | 351  

The remainder of this paper is organized as follows. Section 2 introduces the fundamental components of RAG systems, 

including the retriever and generator modules. Section 3 delves into various retrieval strategies—from semantic similarity 

methods to advanced multi-query techniques. Section 4 describes modern agentic architectures designed to dynamically route 

queries and integrate multiple processing streams. Section 5 discusses the developer stack required to build scalable RAG 

systems, detailing best practices for model fine-tuning and system orchestration. Section 6 focuses on embedding model 

considerations and selection criteria, while Section 7 elaborates on approaches for fine-tuning reranker models. Section 8 

outlines the metrics used for evaluating the performance of RAG systems. Finally, Section 9 concludes with an outlook on future 

developments in this research area. 

2. Fundamentals of RAG Systems 

A typical RAG system is built upon two major components: a retriever that identifies and collects relevant documents from an 

external source, and a generator that synthesizes a final response conditioned on the retrieved context. 

2.1. The Retrieval Component 

The retrieval module is responsible for scanning large repositories and identifying data segments that pertain to the query. 

Approaches include: 

• Dense Retrieval: Neural embedding models map both queries and documents to high-dimensional vector spaces. 

Similarity metrics, such as cosine similarity, determine which documents are most relevant [1]. 

• Sparse Retrieval: Traditional methods, such as TF-IDF and BM25, leverage term frequencies and lexical overlaps for 

relevance determination. 

• Hybrid Retrieval: By combining dense and sparse methods, systems achieve a balance between semantic 

understanding and term-based matching. 

In practice, a threshold is often imposed on similarity scores to guarantee that only documents meeting a minimum relevance 

criterion are passed on to the generation phase. 

2.2. The Generation Component 

Once relevant documents are retrieved, the generation module—typically a sophisticated LLM—conditions on both the user 

query and the collected context. By concatenating the input with the context, the generation module produces a coherent and 

fact-checked response. This method reduces the risk of model hallucination and enhances output reliability. Recent studies have 

demonstrated that incorporating precise retrieval context significantly improves response quality, particularly when the 

generator has been fine-tuned on domain-specific data [1],[6]. 

2.3. Integration Mechanisms 

Effective RAG systems do not treat retrieval and generation as independent modules. Instead, they embed dynamic feedback 

loops that allow the system to iteratively update the retrieval based on interim generation outputs. This interaction ensures that 

the final answer is not only logically coherent but also aligns strongly with verified external data. Such an integrated approach is 

foundational to contemporary RAG architectures [2],[8]. 



Retrieval-Augmented Generation (RAG) Systems: Architectures, Strategies, and Evaluation 

Page | 352  

 

3. Retrieval Strategies 

The performance of a RAG system is largely predicated on its retrieval strategy. In this section, we describe several 

methodologies that enhance the capture and utilization of relevant context. 

3.1. Semantic Similarity and Threshold-Based Methods 

A core method in modern RAG systems is the computation of semantic similarity between queries and documents. Neural 

embeddings are leveraged to project textual information into a high-dimensional space where similarity can be measured using 

cosine distance. Only documents that exceed a predetermined threshold are selected, ensuring high relevance [1]. This strategy 

is particularly effective when dealing with nuanced queries that may not have exact keyword matches. 

3.2. Multi-Query and Self-Query Retrieval 

Complex queries often benefit from a multi-query retrieval approach, where several rephrased versions of the input query are 

generated using an LLM. Each variant explores a different semantic angle, resulting in a more comprehensive set of candidate 

documents. Similarly, self-query retrieval dissects the original query into multiple structured components—such as key terms or 

metadata—and performs targeted searches on each facet. These techniques together improve the recall rate without 

compromising precision [2],[4]. 

3.3. Reranking and Hybrid Search Techniques 

After the initial retrieval, a reranker—typically based on cross-encoder models—is employed to reorder the documents 

according to refined relevance criteria. Hybrid search methods merge keyword-based approaches with semantic matching to 

leverage both syntactic and contextual information. The resulting document ordering better aligns with the query’s intent, 

thereby providing the generator with the most pertinent context [1],[7]. 

3.4. Contextual Compression 

Contextual compression aims to trim redundant or peripheral content from retrieved documents. By isolating the segments of 

text most closely related to the query, this method reduces the volume of input to the generation module, improving 

computational efficiency and output clarity. This step is particularly valuable when operating under token constraints in large 

LLMs [2],[8]. 

4. Agentic Architectures in RAG Systems 

Agentic architectures represent the next evolution in RAG system design. These systems employ specialized modules—often 

referred to as agents—that dynamically route queries to the appropriate retrieval and generation components. 



JCSTS 6(5): 350-358 

 

Page | 353  

4.1. Dynamic Query Routing 

In agentic RAG systems, an intelligent router first assesses the complexity and domain specificity of the query. Based on this 

assessment, the query is directed toward the most relevant vector database or retrieval module. For example, a query with 

technical jargon might be routed to a specialized academic corpus, whereas a general inquiry might be processed by a broader 

search engine. This targeted routing improves efficiency and accuracy [2],[4]. 

4.2. Single-Agent versus Multi-Agent Systems 

Agentic architectures can be designed as either single-agent or multi-agent systems. In a single-agent design, one unified 

module handles query analysis, retrieval, and generation routing. While simpler to deploy, this approach may be less effective for 

multifaceted queries. Conversely, multi-agent systems distribute the workload across multiple specialized agents—for instance, 

one dedicated to keyword searches and another to semantic analysis. Their outputs are merged via ensemble techniques, such 

as reciprocal rank fusion, to generate a comprehensive result set [2],[7]. 

4.3. Adaptive and Self-Reflective Mechanisms 

Adaptive RAG architectures incorporate classifiers that determine the optimal retrieval strategy based on query complexity. If 

initial retrieval results are found to be insufficient, the system automatically triggers supplementary processes, such as query 

rephrasing and additional retrieval rounds. In parallel, self-reflective mechanisms allow the generator to assess its own outputs 

and, if necessary, request additional context or reordering from the reranker. These strategies ensure that the final output is both 

precise and grounded in trusted sources [2],[8]. 

 

5. The RAG Developer Stack 

Building efficient RAG systems requires a robust developer stack that integrates LLMs, vector databases, and fine-tuned retrieval 

components. This section outlines the primary components of the modern RAG developer ecosystem. 

5.1. Pre-trained Language Models and Retrieval Frameworks 

The backbone of any RAG system is its LLM. Leading models such as OpenAI’s GPT series, Meta’s LLaMA, and Anthropic’s Claude 

are commonly used due to their robust generative capabilities. These models are paired with retrieval frameworks like FAISS, 

ChromaDB, and Weaviate that are capable of rapid nearest-neighbor searches across vast vector spaces. The synergy between an 

LLM and a high-performance retrieval engine is critical for achieving both low latency and high precision in industrial 

applications [1],[4],[10]. 



Retrieval-Augmented Generation (RAG) Systems: Architectures, Strategies, and Evaluation 

Page | 354  

5.2. Fine-Tuning Embedding Models 

To enhance retrieval precision, embedding models are often fine-tuned on domain-specific data. The process comprises several 

steps: 

1. Dataset Preparation: Curate a representative set of query–document pairs. 

2. Model Initialization: Load a pre-trained embedding model (e.g., variants of BERT or Sentence Transformers). 

3. Loss Function Application: Utilize loss functions like MultipleNegativesRankingLoss to maximize semantic alignment 

between related texts. 

4. Hyperparameter Optimization: Fine-tune learning rate, batch size, and training steps to achieve optimal performance. 

5. Validation: Evaluate the fine-tuned model on a hold-out dataset and iterate as needed. 

This tailored fine-tuning process ensures that the embedding model captures the nuances of the target domain, which in turn 

improves retrieval quality [5],[6]. 

5.3. Fine-Tuning Reranker Models 

Reranker models are essential for refining the candidate document list prior to generation. Their fine-tuning involves: 

1. Augmenting Training Data: Generate positive and negative query–document pairs. 

2. Model Selection: Choose a pre-trained cross-encoder reranker model. 

3. Training Configuration: Optimize model training by calibrating learning rates and batch sizes to prevent overfitting. 

4. Performance Evaluation: Monitor metrics such as precision, recall, and ranking accuracy. 

Fine-tuned rerankers ensure that the most contextually pertinent documents are prioritized for the generation step [7],[8]. 

5.4. Orchestration and Integration Frameworks 

The final RAG system is not merely a collection of disparate modules but rather an integrated ecosystem. Orchestration 

frameworks like LangChain, LlamaIndex, and Haystack manage the interaction between retrieval, fine-tuning, and generation 

processes. They enable asynchronous processing, caching, and dynamic model selection that are crucial for maintaining low 

latency and high throughput in production settings [4],[10]. 

 



JCSTS 6(5): 350-358 

 

Page | 355  

6. Considerations in Embedding Model Selection 

Embedding models convert text into high-dimensional vectors and lie at the core of the retrieval process. Their selection is 

influenced by several key factors. 

6.1. Context Window and Tokenization Methods 

The context window, or the maximum number of tokens a model can process, defines the upper limit for input length. Larger 

context windows are beneficial when dealing with long-form content such as research articles and technical manuals. 

Tokenization methods, typically employing subword strategies, ensure that even rare or specialized terms are properly encoded 

[6]. 

6.2. Dimensionality and Vocabulary Size 

Embedding dimensionality directly affects a model’s ability to capture semantic nuances. While higher dimensions often yield 

richer representations, they come with greater computational costs. Similarly, a larger vocabulary allows for finer linguistic 

granularity but requires more resources. Balancing these factors is essential for efficient, real-time retrieval performance [6]. 

6.3. Domain Adaptation and Benchmarking 

Benchmark evaluations using tools like the Massive Text Embedding Benchmark (MTEB) help identify which embedding models 

perform best on target tasks. Fine-tuning these models on a domain-specific corpus further improves their ability to capture 

relevant semantic relationships, thereby enhancing both recall and precision in retrieval tasks [5],[6]. 

 

7. Fine-Tuning Reranker Models 

Rerankers are critical for refining the output from initial retrieval steps. Fine-tuning these models tailors them to the specific 

language and context of the application domain. 



Retrieval-Augmented Generation (RAG) Systems: Architectures, Strategies, and Evaluation 

Page | 356  

7.1. Fine-Tuning Workflow 

The process begins with dataset augmentation, where diverse and challenging query–document pairs are generated. Using a 

state-of-the-art pre-trained cross-encoder, the model is fine-tuned with a focus on achieving high ranking precision. 

Hyperparameters such as learning rate and batch size must be carefully calibrated to ensure stable convergence without 

overfitting. Subsequent evaluation on validation sets confirms that the fine-tuned reranker consistently elevates the most 

relevant documents to the top of the candidate list [7],[8]. 

7.2. Impact on System Performance 

By optimizing the reranker, the RAG system benefits from a more targeted and refined context selection. This leads to improved 

output consistency and minimizes the risk of generating responses that include irrelevant or contradictory information. The 

overall user experience is enhanced by delivering answers that are tightly aligned with verified and pertinent data [7]. 

8. Evaluation Metrics for RAG Systems 

Comprehensive evaluation is essential for any RAG system to ensure that both retrieval and generation components meet 

performance criteria. 

8.1. Retrieval Metrics 

Key retrieval metrics include: 

• Contextual Precision: The proportion of retrieved document fragments that are relevant to the user query. 

• Contextual Recall: The extent to which the system captures all pertinent documents relative to a ground truth set. 

• Relevance Score: A composite measure that reflects the semantic alignment between the query and the retrieved text. 

These metrics assess how effectively the retriever filters and prioritizes content [1],[8]. 

8.2. Generation Metrics 

For the generation module, the following metrics are vital: 

• Answer Relevancy: Evaluates how well the generated response addresses the query. 

• Faithfulness: Assesses whether the response is accurately grounded in the retrieved context. 

• Hallucination Rate: Quantifies the incidence of spurious or contradictory information in the output. 

When combined, these metrics provide a holistic view of the system’s performance, facilitating continuous improvements [2],[8]. 

8.3. End-to-End System Evaluation 

In real-world applications, end-to-end evaluation is necessary to measure: 

• Latency: The total time elapsed from query submission to response generation. 

• Token Efficiency: The optimal use of context tokens without redundancy. 

• Scalability: The system’s ability to maintain performance as load increases. 

Robust evaluation frameworks enable iterative refinement and pinpoint areas for further enhancement [4],[10]. 



JCSTS 6(5): 350-358 

 

Page | 357  

 

9. Conclusion 

This paper has presented a comprehensive technical analysis of Retrieval-Augmented Generation (RAG) systems. We discussed 

the core components—retriever and generator—and detailed various retrieval strategies such as semantic similarity, multi-query 

retrieval, reranking, and contextual compression. Agentic architectures, with their dynamic query routing and multi-agent 

systems, represent an exciting frontier in RAG design by enabling more precise and adaptive information processing. 

Furthermore, we examined the RAG developer stack, emphasizing the importance of pre-trained language models and robust 

vector databases. Critical best practices in fine-tuning embedding and reranker models were discussed, along with strategies for 

integrating these components using modern orchestration frameworks. Detailed considerations in embedding model selection 

and performance benchmarking were provided, underscoring the challenges associated with context window size, 

dimensionality, and vocabulary size in domain-specific tasks. 

Finally, we outlined a thorough evaluation framework that measures both retrieval efficiency and response fidelity. By combining 

metrics for contextual precision, recall, answer relevancy, faithfulness, and hallucination rate, the framework offers a holistic 

assessment of system performance and reliability. As RAG systems continue to evolve, future research will likely focus on 

reducing computational overhead through model distillation, improving real-time adaptive feedback loops, and refining multi-

agent routing mechanisms to further enhance both accuracy and efficiency. 

In conclusion, the synthesis of retrieval and generation in RAG systems opens up new avenues for developing robust, scalable, 

and context-aware AI applications. This paper serves as a comprehensive guide for researchers and practitioners aiming to 

harness the full potential of RAG architectures in a wide array of industrial and academic scenarios. 

Funding: This research received no external funding.  
Conflicts of Interest: The authors declare no conflict of interest. 
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of 

their affiliated organizations, or those of the publisher, the editors and the reviewers.  

 

 

 

 



Retrieval-Augmented Generation (RAG) Systems: Architectures, Strategies, and Evaluation 

Page | 358  

References 

[1] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Riedel, S. (2020). Retrieval-Augmented Generation for 

Knowledge-Intensive NLP Tasks. arXiv preprint arXiv:2005.11401. 

[2] Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M. (2020). REALM: Retrieval-Augmented Language Model Pre-Training. arXiv 

preprint arXiv:2002.08909. 

[3] Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., ... & Yih, W. T. (2020). Dense Passage Retrieval for Open-Domain 

Question Answering. arXiv preprint arXiv:2004.04906. 

[4] Izacard, G., & Grave, E. (2020). Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. 

arXiv preprint arXiv:2007.01282. 

[5] Nogueira, R., & Cho, K. (2019). Passage Re-Ranking with BERT. arXiv preprint arXiv:1901.04085. 

[6] Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv preprint 

arXiv:1908.10084. 

[7] Johnson, J., Douze, M., & Jégou, H. (2019). Billion-Scale Similarity Search with GPUs. IEEE Transactions on Big Data. 

[8] Lin, J., Hilton, J., & Evans, O. (2021). TruthfulQA: Measuring How Models Mimic Human Falsehoods. arXiv preprint 

arXiv:2109.07958. 

[9] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2019). Exploring the Limits of Transfer Learning 

with a Unified Text-to-Text Transformer. arXiv preprint arXiv:1910.10683. 

[10] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot 

Learners. arXiv preprint arXiv:2005.14165. 

 

 

 


