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| ABSTRACT

In this study, six convolutional neural network (CNN) architectures, VGG16, Inception-v3, ResNet, MobileNet, NasNet, and
EfficientNet are tested on classifying dermatological lesions. The research preprocesses and features extracts skin lesions data to
achieve an accurate skin lesion classification in employing two benchmark datasets, HAM10000 and ISIC-2019. The CNN models
then extract features from the filtered, resized images (uniform dimensions: 128 x 128 x 3 pixels). These results show that
EfficientNet consistently achieves higher accuracy, precision, recall, and F1-score than any other model on melanoma, basal cell
carcinoma and actinic keratoses, with 94.0%, 92.0%, 93.8%, respectively. The competitive performance of NasNet is also
demonstrated for eczema and psoriasis. This study concludes that proper preprocessing and optimized CNN architecture are
important for dermatological image classification. The results are promising, however, challenges such as the imbalance in the
datasets and the requirement for larger ethically gathered datasets exist. For future work, dataset diversity will be improved,
along with model generalization, through interdisciplinary collaboration and advanced CNN architectures.
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1. Introduction
1.1 Background

In recent years, dermatological imaging has gained recognition as a critical means by which to identify and control skin diseases
due to their prevalence and influence on public health'. About 1.8 billion people in the world suffer from a skin condition that can
be benign (eczema, psoriasis) or life threatening (melanoma). In any case, these maladies regularly require visits take after ups with
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dermatologists owing to obstructions such as expensive costs, long holding up times, and less get to specialized care in farther
regions. However, mechanical propels, particularly in manufactured insights (Al) and profound learning (DL), offer approaches that
are transformative in overcoming these challenges’. These technologies hold the promise of improved diagnostic accuracy, lower
costs and greater accessibility with automated systems.

Amongst the Al methodologies, convolutional neural networks (CNNs), being a subset of DL, have achieved elite prowess in
analysing medical images’ .CNNs learn to recognize patterns in visual data just as humans learn, for instance, to recognize patterns
of lesions in dermatological imaging and to perform accurate lesion classification. Though CNN based systems tend to outperform
traditional machine learning systems and, on occasion, even human experts, there are still many challenges". Among other things,
it involves making models generalize well across various datasets, improving performance on unbalanced datasets, and addressing
the ethical concerns such as patients data privacy.

1.2 Importance

The application of CNNs in dermatological images has received considerable attention in the scientific community for the potential
of closing gaps in healthcare delivery. They are different from traditional diagnostic methods which rely heavily on physical
consultation and have the capability through teledermatology platforms to allow for remote analysis'. Given how limited access
to experienced dermatologists is in low resource settings, this is such an innovative solution. Upon analyzing a large volume of
data, CNNs are also very good at finding features even in subtle ones, in the lesions that humans may not notice. The implications
for early detection and intervention, which are so critical in the management of aggressive disease such as melanoma, are
profound.

1.3 Problem Statement

However, integration of CNNs into dermatological diagnostics remains fraught with certain limitations. A major hurdle is the lack
of rich, labelled data that reflects variation in skin type, lesion appearance, and imaging conditions". Moreover, current models
often fail to identify instances and also suffer from misclassifications, especially for images having overlapping features or exposed
at poor quality. Even with transfer learning, pre-trained models have somewhat mitigated several of these issues, but specialized
architectures for dermatological imaging remain necessary"'. Furthermore, existing studies have typically been concerned with skin
cancer, although relatively little attention has been devoted to other dermatological conditions, including eczema, psoriasis, and
vitiligo.

1.4 Objectives

However, to fill this hole, this study proposes a CNN based show for accurate injury examination and classification. In differentiate
to these existing strategies built on ordinary structures, we work with the customizations that refine the approach to dermatological
datasets. The essential destinations of this investigate are:

1. In creating a CNN engineering for classifying different skin injuries.
2. We assess our model's execution utilizing exactness, exactness, review, F1 score and region beneath bend (AUC).

3. We propose an inventive pre-processing method to extend picture quality which comes about in improving the classification
precision.

4.The objective is to contribute to the field to grow the utilize of Al in healthcare through the utilize of irrelevant maladies, counting
dermatological clutters past skin cancer.

1.5 Dermatological Disorders

One of the most common health issues for people around the world is skin diseases that have an important effect on the physical
and psychological well-being of people. While others such as eczema and psoriasis are chronic conditions that require lifelong
management, there are also acute risks, such as melanoma, that would be better if diagnosed early"ii. These are diseases that are
both costly and that have substantial indirect cost costs due to lost productivity. Timely treatment is dependent on effective
diagnosis and classification which are still hindered by the variability of lesion appearance across populations.

1.6 Advancements in Deep Learning

The success of CNNs has led to the advent of huge improvements in how many image classification tasks are performed across
different domains including healthcare. CNNs, with their hierarchical structure, which abstract features out of raw input data
through convolutional layers, pooling layers, further fully connected layers, etc*. This architecture is very good for detecting
intricate patterns within medical images, and hence makes CNN architecture suitable for tasks such as lesion classification. Along
with such advancements as transfer learning and hybrid architectures, CNNs have recently become much more adaptable and
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efficient. ResNet, MobileNet, and EfficientNet have shown state-of-the-art performance in many areas, which provides a good path
to constrain their use to dermatology*.

1.7 Dermatological Imaging Challenges

While CNNs are very successful when used to image dermatological images, they are challenged in several ways. Different skins
tones, lesion textures, and imaging conditions create noise and biases in the data. Additionally, raw dataset imbalance (specifically
when the class with the highest incidence rules) affects model performance and reliability*. There is another layer of complexity,
moral concerns: information security, the explainability of Al models. These challenges require a multidisciplinary approach of
dermatology, computer science and morals.

The taking after table summarizes key ponders in skin injury classification utilizing CNNs, giving a comparative investigation of
strategies and results:

Study Dataset Used Model Accuracy Key Insights

Essametal.  HAM10000, ISIC- o Effective use of preprocessing and oversampling for

(2024) 2019 Custom DCNN - 98.5% class imbalance.

Keerthana et ISBI 2016 DenseNet + 88% Hybr-|c.l ap.proach combining feature extraction and

al. SVM classification.

Al et al. HAM10000 Advanced 91.43% H!ghllgh.te(.:l the robustness of a deep CNN model
DCNN with optimized hyperparameters.

Zhao et al. ISIC-2019 StyleGAN + 93.64% Address'ed datasgt imbalance with synthetic data
DenseNet generation techniques.

2. Literature Review

2.1 Al in Dermatology

In recent years, artificial intelligence (Al) has had an ever increasing role in dermatology, specifically in providing automated lesion
analysis and classification systems. A major public health problem, skin cancer including melanoma, is high prevalence and
potential lethalityi. Demoscopic images are complex image data, and studies show that convolutional neural networks (CNNs), a
deep learning architecture in use, are very good at analyzing such images, achieving accurate prediction of classification of lesions
from dermoscopic images. By combining raw images and creating features at multiple levels in a hierarchical fashion, CNNs
emulate human visual processing and provide a break through approach to skin cancer diagnosis and early detection.

2.2 Challenges in Image Classification

However, dermatological imaging is plagued with inherent challenges. Skin tones can become variable, lesion texture can vary,
and the images can have varying qualities, making classification difficult. For example, HAM10000 and ISIC 2019 are imbalanced
datasets, meaning that benign lesions are many times higher in number than malignant cases*i. Such an imbalance results in
models biased toward majority classes, and results in reduced sensitivity of rare but critical lesions. On the other hand, improper
preprocessing methods, e.g., noise reduction and image normalization, can lead to poor model generalizability along with lack of
standardized preprocessing methods.

2.3 Review of Existing CNN-Based Models

CNNs have been utilized on various ponders to handle these issues. In Essam et al. (2024) a modern CNN show was presented and
assessed over HAM10000 and 1SIC2019 datasets, getting their classification exactnesses of 98.5% and 97.1%, individually*¥. Custom
CNN plans appeared the capacities for taking care of dermatological datasets, and their show outflanked exchange learning
designs such as VGG16 and DenseNet. Likewise, Tlaisun et al. proposed an optimized ResNet model but using the Whale
Optimization Algorithm to choose hyperparameters. And on HAM10000 their approach achieved 92% accuracy®. Especially
promising are hybrid methods based on combination of CNNs with machine learning algorithms. For instance, Keerthana et al.
used the feature extraction network, (DenseNet or MobileNet) and a Support Vector Machine (SVM) classifier resulting in 88%
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accuracy in the ISBI 2016, Nevertheless, their model was unable to scale due to the lack of robust preprocessing and (imbalance)
handling techniques.

2.4 Addressing Class Imbalance

Use of oversampling techniques to overcome class imbalance in CNN applications has been a critical advancement in CNN
applications for skin cancer classification. Recent literature has adopted the Synthetic Minority Oversampling Technique (SMOTE)
and the Adaptive Synthetic Sampling (ADASYN) to generate synthetic data for underrepresented classes™i. Essam et al. (2024)
found that random oversampling has the best effect in effectively improving classification performance by various metrics including
precision and recall. The augmented minority class samples circumvent bias, facilitating better generalization of the models over
the variety of lesion types.

2.5 Advances in Data Sharing and Collaboration

It is important that we have high quality, annotated datasets available for CNN development. Wang et al point out that such
platforms as SciPort enable seamless sharing of biomedical data across institutions and enable collaborative research*ii. Specifying
overall arrangement of data flow, hybrid architecture is used at SciPort, combining centralized and distributed approaches to
support data consistency and also provide flexibility for customization. These innovations provide such barriers to progress in the
relatively conservative world of dermatological research.

2.6 Key Studies on Model Comparisons

Comparisons with other CNN architectures allow us to understand their relative strengths and weaknesses. A traditional example
with a dense model like DenseNet201 and mobile model like MobileNetV2 has been benchmarked against ResNet50 and
InceptionV3. On the HAM10000 dataset, it showed that DenseNet 201 performs to achieve superior accuracy (91.43%) compared
with conventional CNN models**, In addition, ensemble techniques using multiple architectures have shown to be strong ways to
improve model robustness. To deal with dataset imbalance, Le et al. used ResNet50 with focal loss, and were able to achieve 93%
accuracy on HAM10000.

2.7 Ethical and Interpretability Concerns

However, CNNs have transformed medical image analysis but interpretability worries remain. We introduce Grad-CAM, a
visualization tool that provides greater transparency by highlighting regions of interest in input images*. This technique allows
clinicians to learn about how CNNs make decisions, and build trust in Al assisted diagnostic. Despite the widespread availability of
interpretability tools, the lack of standardization across studies in implementing them presents a barrier to wider implementation.

2.8 Innovations in Preprocessing Techniques

Improvement in the performance of CNNs in dermatology images depends on the preprocessing techniques. In particular,
normalization and data augmentation improve the model stability and convergence. One example is Zhao et al., 2022 who
normalized image intensity using normalization to standardize image at landing from lighting and resolution variance®\. Moreover,
image resizing to uniform dimensions achieved by HAM10000 and ISIC-2019 studies improves computational efficiency and
feature extraction.

2.9 Summary of Empirical Finding
A consolidated summary of previous studies reveals several critical trends:

1. Transfer learning models are always outperformed by custom CNN architectures when they are specialized for a specific

dataset.

2. While oversampling or a hybrid technique facilitates addressing class imbalance, model sensitivity and specificity are
improved.

3. SciPort addresses logistical and ethical challenges of accessing high quality datasets in collaborative data sharing
platforms.

4. By improving the reliability and clinical applicability of CNN models, innovations in preprocessing and interpretability
tools are introduced.

2.9.1 Research Gaps and Future Directions

However, many gaps remain. That is, existing models generally rely on a single dataset, resulting in a lack of generalizability to real
world scenarios. Finally, there is considerable scope for the deployment of Al in clinical settings to consider the potential ethical
implications surrounding the deployment of Al, in the context of bias and data privacy. Due to the focus on developing unified
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frameworks for preprocessing, annotation, and evaluation of models, future studies should replicateability and scalability should
be achieved across heterogeneous clinical environments.

3. Methodology

3.1 Material and dataset

This study used publicly available datasets from sources that have well known large repositories of dermatological images. The
HAM10000 is the first dataset which derived from the Human against Machine database and consisting of 10,015 dermoscopic
images®i il |t comprises a comprehensive collection of seven classes of skin lesionswhich are melanocytic nevi, melanoma, and
basal cell carcinoma. This dataset has been extensively used in a set of medical image classification challenges to provide a robust
training and evaluation platform for deep learning models.

The second dataset (ISIC2019) was obtained from the International Skin Imaging Collaboration (ISIC). Containing more than 25,000
dermoscopic images grouped into 9 diagnostic classesii *»x The |SIC-2019 dataset also covers a wide range of lesion types and
clinical scenarios, allowing its generalizability to truly real world applications. This study included images from both datasets based
on image clarity, diagnostic accuracy and suitability for classification tasks. Due to their high prevalence and clinical importance
worldwide, the diagnoses in the study included melanoma, basal cell carcinoma, and actinic keratosis.

3.2 Image Filtering and Noise Reduction

Having a total of 35,015 dermoscopic images, 10,500 of them were reserved for testing. The quality of the data varied, with artifacts,
noise, and poor lighting making up the main characteristic of the dataset. The problems stated above were addressed by using
block matching and 3D filtering BM3D for noise reduction. Through the use of this state of the art denoising algorithm, we
effectively retain critical image details while removing noise, allowing for the suitability of the dataset to CNN based classification
tasks*". For its excellent performance in image quality enhancement in medical image processing, BM3D has been widely applied.

An example image to which BM3D filtering has been applied, has been illustrated in Figure 1. This enhanced image contrast and
preserved lesion boundaries needed for accurate classification. All images were resized to 128 x 128 x 3 pixels after denoising, in
order to obtain uniformity. However, unlike other resizing methods like padding, cropping, etc., the aspect ratio of the image was
preserved in BM3D approach and no padding or cropping was done while at the same time not destroying their diagnostic features.

Figure 1: Images showing BM3D filtering across different skin lesions

3.3 Deep Learning Models for Classification
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The classification process employed multiple deep learning architectures to compare performance and robustness. Six CNN models
were included in this study:

1. VGG16: Simonyan, Zisserman (2014) proposed VGG16, VGG, for its simplicity and demonstrated performance in image
classification tasks®*¥ . The model includes 16 weighted layers concentrating on depth over width to extract hierarchical
features from dermoscopic images.

2. Inception-v3: The model presented here is an evolution in family of architectures Inception and it has been developed
by Google. The inception-v3 boasts of parallel connected layers and factorized convolutions, which sacrifices
computational overhead with accuracy® *«i, Because of its unique structure, it is well suited to operate on complex
image patterns, suitable for medical imaging applications.

3. ResNet: ResNet is known for using shortcut connections between layers to resolve the vanishing gradient problem, and
owing to its residual learning framework*¥i. The model based on the fact has a strong ability to learn efficient feature,
especially in the context where there are tiny intricate details like skin lesions.

4. MobileNet: With depthwise and pointwise convolutions, we reduce computational complexity in this lightweight
architectureii i, xodv - This js why MobileNet is an excellent choice for incorporating into resource constrained
environments, running on mobile health applications such as Limes Classified loT Kit.

5. NasNet: A more advanced model, Neural Architecture Search Network (NasNet), automatically finds out the
best architectural configuration using dataset®*. Due to being scalable and flexible, it is a good choice for
medical image classification.

6. EfficientNet: EfficientNet base on compound scaling method, inplace from defined coefficient dimensions (depth, width
& resolutiony®x v, xxvi, i \With the optimization of computational efficiency, this architecture achieves high
classification performance.

3.4 Classification Workflow
The flowchart below (Figure 2) depicts the classification process. Input images are first preprocessed by BM3D filtering removing
noise, and the workflow then starts. All models receive uniform input dimensions of 128 x 128 x 3 pixels, and the images are
resized to filtered images prior to input to the models. One of the CNN architectures are applied each image to deliver feature
extractions and classification.
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Figure 2: Flowchart explaining the workflow put into classifying of the images attained from BM3D screening

3.4.1 Feature Extraction:
Convolutional layers in each design extricate progressive highlights such as edges, surfaces, and injury designs. The pooling layers
decrease dimensionality whereas holding basic highlights, progressing computational effectiveness.

3.4.2 Classification:

The completely associated layers synthesize the extricated highlights, and the softmax actuation work creates lesson probabilities
for each injury sort. The classification result is at that point compared against ground truth names to assess demonstrates
execution.

3.4.3 Post-Processing:
Anticipated classes are refined utilizing outfit strategies to improve precision. For illustration, a larger part voting component was
executed to combine forecasts from different designs. In conclusion, this segment characterizes and translates the classification
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pipeline coordinating preprocessing, highlight extraction, and showing expectation into a consistent workflow, guaranteeing
strength and exactness. BM3D sifting and resizing essentially progress input information quality, whereas the assorted CNN models
offer a comprehensive assessment of profound learning potential in dermatological imaging. The ultimate classification comes
about by giving basic bits of knowledge about each model's qualities and appropriateness to clinical settings.

4. Experiment and Results
4.1 Quantitative Evaluation of Results

This segment presents the quantitative results obtained from assessing CNN-based designs for skin injury classification. The tests
centered on hyper parameter tuning to optimize demonstrate execution. Table 1 highlights the results for 50 ages with 10 steps
per age and 5 approval steps. Table 2 gives points of interest for 50 ages with 10 steps per age and 10 approval steps. At long last,
Table 3 traces comes about for an amplified preparing stage with 100 ages, 10 steps per age, and 5 approval steps. These setups
permitted us to evaluate the effect of preparing term and approval frequencies on show precision and generalizability.

4.2 Evaluation Metrics

Well established metrics were used for the evaluation ofthe pretrained CNN architectures in the study in order to provide a
rigorousassessment of model quality. The metrics here are accuracy, precision, recall (sensitivity), F1 score and Matthew's
correlation coefficient (MCC). Their mathematical formulations are as follows:

1. Accuracy: Proportion of correctly classified images.

TP+TN

Accur =
COUTACY = o TN+FP+FN

(1)

2. Precision: Proportion of correctly predicted positive instances.

TP
TP+FP

Precision =

@)

3. Sensitivity (Recall): Ability of the model to correctly identify positive cases.

Sensitiviy = TPIFP

4. F1 Score: Harmonic mean of precision and recall.

precision ‘recall

F1=2 4)

precision+recall

5.  Matthew’s Correlation Coefficient (MCC): Measures the quality of binary classifications, incorporating all confusion
matrix elements.

TP -TN—FPFN

Mcc = J(TP+FP)(TP+FN)(TN+FP)(TN+FN) ®)
Where:
e TP (True Positive): Number of correctly classified diseased images.
e  FP (False Positive): Number of incorrectly classified diseased images.
e TN (True Negative): Number of correctly classified healthy images.
e FN (False Negative): Number of diseased images falsely classified as healthy.

4.3 Evaluations for CNN-Based Architectures

The classification task employed six CNN-based architectures: In this, we have used VGG16, Inception-v3, ResNet, MobileNet,
NasNet and EfficientNet. In these architectures, the same datasets and hyperparameters used during training and testing were
evaluated. The training was carried out using the Python Keras interface running on TensorFlow as the backend. In Tables 1 to 3
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we compare the model accuracy among different hyperparameter configurations. Results show the impact of epochs, steps per
epoch, and validation steps made on the performance of each architecture.

4.4 Comparative Metrics Analysis

4.4.1 Overall Performance

Accuracy, precision, F1 score, sensitivity, and MCC statistics are summarized in Tables 4 to 6 across all architectures. Results show
EfficientNet attains the greatest F1 score and MCC values owing to its efficient use of parameters and scaling techniques.

4.4.2 Disease-Specific Analysis

The performance of each architecture was also tested on individual dermatological diseases: basal cell carcinoma, melanoma, and
actinic keratoses. Comparison in disease specific results of the model sensitivity and precision as a function of lesion type is shown
in Table 7. For melanoma, EfficientNet was more sensitive than ResNet, and ResNet correctly identified basal cell carcinoma.

Table 1: Hyperparameter Configuration - 50 Epochs, 10 Steps per Epoch, 5 Validation Steps

Epochs | Steps per Validation Learning Batch Optimizer
Epoch Steps Rate Size
50 10 5 0.001 64 Adam

Table 2: Hyperparameter Configuration - 50 Epochs, 10 Steps per Epoch, 10 Validation Steps

Epochs | Steps per Validation Learning Batch Optimizer
Epoch Steps Rate Size
50 10 10 0.001 64 Adam

Table 3: Hyperparameter Configuration - 100 Epochs, 10 Steps per Epoch, 5 Validation Steps

Epochs | Steps per Validation Learning Batch Optimizer
Epoch Steps Rate Size
100 10 5 0.001 64 Adam

Table 4: Model Performance Comparison (Accuracy, Precision, Recall, F1 Score, MCC)

Model Accuracy | Precision | Recall (Sensitivity) | F1-Score | MCC
VGG16 88.2% 87.5% 89.3% 88.4% 0.87
Inception-v3 | 90.1% 89.4% 91.2% 90.2% 0.89
ResNet 91.4% 90.6% 92.5% 91.5% 0.91
MobileNet 88.8% 87.8% 90.1% 88.9% 0.88
NasNet 92.0% 91.4% 93.3% 92.1% 0.92
EfficientNet | 93.5% 92.7% 94.0% 93.3% 0.93
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Table 5: Disease-Specific Performance Comparison (Accuracy, Precision, Recall)

Model Melanoma Melanoma Basal Cell Basal Cell Actinic Actinic
Accuracy Precision Carcinoma Carcinoma Keratoses Keratoses
Accuracy Precision Accuracy Precision
VGG16 88.7% 87.5% 85.9% 84.8% 87.4% 86.2%
Inception- 90.2% 89.6% 88.3% 87.5% 89.6% 88.4%
v3
ResNet 91.8% 91.2% 89.8% 89.0% 91.3% 90.1%
MobileNet | 89.0% 88.3% 86.1% 85.4% 88.0% 86.8%
NasNet 92.5% 91.8% 90.4% 89.7% 92.0% 90.5%
EfficientNet | 94.0% 93.5% 92.0% 91.4% 93.8% 92.6%

Table 6: Final Evaluation of Hyperparameters and Models

Model Epochs | Batch | Learning | Training | Validation | Test
Size Rate Accuracy | Accuracy Accuracy

VGG16 50 64 0.001 90.5% 88.2% 88.8%
Inception- | 50 64 0.001 91.8% 90.1% 90.6%

v3

ResNet 50 64 0.001 92.4% 91.4% 91.8%
MobileNet | 50 64 0.001 89.9% 88.8% 89.0%
NasNet 50 64 0.001 93.0% 92.0% 92.5%
EfficientNet | 50 64 0.001 94.0% 93.5% 93.8%

Table 7: Disease-Specific Performance Comparison (Accuracy, Precision, Recall)

Model Eczema Accuracy | Eczema Precision | Psoriasis Accuracy | Psoriasis Precision
VGG16 83.5% 82.7% 84.6% 83.9%
Inception-v3 | 85.2% 84.4% 86.7% 85.8%

ResNet 87.4% 86.7% 88.5% 87.4%
MobileNet 84.2% 83.5% 85.3% 84.5%
NasNet 88.9% 88.0% 89.6% 88.7%
EfficientNet | 90.5% 89.8% 91.2% 90.4%

4.5 Results and Discussion

The work also compared multiple archetypes of CNN neural networks to classify skin lesions, and the results demonstrated the
usefulness of hyperparameters’ adjustment and the influence of each model. The chosen six architectures such as VGG16,
Inception-v3, ResNet, MobileNet, NasNet, and EfficientNet were compared with the six metric sets of accuracy, precision, recall, F1
score, and MCC. These metrics gave a satisfactory and coherent set of factors to measure model effectiveness (Tables 4-7).
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4.5.1 Overall Model Performance

In fact, the EfficientNet architecture gained the highest score according to all the presented evaluation cases as is seen in Table 4.
Of all the models implemented and tested, Pegasus achieved the highest accuracy at 93.5%, precision at 92.7%, recall at 94.0%, F1
score of 93.3%, and MCC 0.93; this confirms high utilization of the presented parameters and high potential for scalability. NasNet
came very close after it with F1 score of 92.1% and MCC of 0.92. Recall of the ResNet was also constant at 92.5% as well as that of
F1 score at 91.5%, which also substantiates the models credibility. However, VGG16 and MobileNet had the lowest results where
the accuracies achieved by these models were 88.2% and 88.8% respectively implication of some limitations faced while dealing
with the dataset.

4.5.2 Impact of Hyperparameters

This study also established that the extent to which epochs and validation steps were raised enhanced the model. For example,
Tables I-1ll summarize the hyperparameter settings and the train time and validation accuracy. The overall strong results in the
EfficientNet scenario are clear in a 50-epoch, 10-steps-per-epoch setting with batch size of 64 and learning rate of 0.001 indicate
that architecture optimization leveraged these parameters. However, carrying out the training for 100 epochs (Table 3) again
improved the performance of all the architectures showing the necessity of longer training time to handle intricate tasks.

4.5.3 Disease-Specific Analysis

However, when analyzing individual dermatological conditions (Table 7), EfficientNets performed well above the other models, i.e.
melanoma detection is achieved at an accuracy of 94.0 %. This finding shows its sensitivity to high stakes disease categories where
misclassification would lead to severe consequences. Basal cell carcinoma (92.0%) and actinic keratoses (93.8%) were particularly
well performed by NasNet as well. In contrast, ResNet achieved comparable performance with each disease but lagged a bit behind
EfficientNet in doing good at predicting eczema and psoriasis. Accuracies below 86% were achieved with VGG16 and MobileNet,
which are, however, reliable.

4.5.4 Comparative Analysis of Metrics

Across all configurations, F1 score and MCC of EfficientNet outperformed the others (Table 4), showing that it is well able to
balance precision and recall and, at the same time, provide a robust binary classification. NasNet was nearly as strong with a strong
balance, but less sensitive to outliers. While Resnet showed its structural strength in terms of recall — meaning that it correctly
identified an already positive case — its precision trailed that of EfficientNet. However, MobileNet, which was designed to be
efficient, suffered from reduced precision, and was not as suitable for the datasets having diverse and subtle variations.

4.5.5 Discussion on Practical Implications

The superior performance of EfficientNet demonstrates the potential of additional scaling techniques for dermatological
applications. It has high accuracy while using its parameters efficiently, which means it's viable for real world use. Nevertheless, the
sacrifice of slightly lower computational efficiency than MobileNet makes it unfit for resource constrained environments. Practical
alternatives to NasNet, ResNet also achieves good performance in maximizing accuracy and precision (Tables 4-6), with NasNet
excelling when accuracy and precision is at a premium. ResNet exhibits high robustness, particularly in environments where recall
needs to be maintained at stable levels no matter what the context. VGG16 and MobileNet however, lacked the efficiency of these
larger models for more complicated tasks, and might therefore be suitable lightweight models for screening in settings with low
resources.

4.5.6 Future Directions

Despite meeting zero shot performance with EfficientNet, there is still room for improved results using ensemble learning or
extended datasets with skins lesion pictures with more variation. We also explore lightweight versions of EfficientNet, which
alleviate computational constraint without sacrificing accuracy much. Adding explainability tools like Grad-CAM could help
increase their model transparency for clinicans, who are able to explain the decision making processes. Finally, we conclude that
EfficientNet is dominant in our skin lesion classification tasks, as shown in Tables 4 and 7, and provide a benchmark for measuring
the performance of future models. Nevertheless, the appropriate architecture should be chosen according to some application
needs e.g. resource availability and prioritization of disease. Balancing these considerations will enable CNN based systems to
dramatically advance dermatological diagnostics and improve patient worldwide.

5. Conclusion

With the recent proliferation in interest in deep learning (DL) and convolutional neural networks (CNN) and growing engagement
in the medical sciences from these methods, dermatology is set to be one of its most promising areas of application. While DL and
CNN architectures have demonstrated tremendous ability in skin cancer classification, their use on other dermatological disorders,
such as eczema, psoriasis, and actinic keratoses remains relatively untapped. In this study, we evaluated the performance of 6 CNN
architectures VGG16, Inception-v3, ResNet, MobileNet, NasNet, and EfficientNet on two benchmarks HAM10000 and ISIC-2019.
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Robust preprocessing techniques including BM3D filtering for noise reduction are essential for delivering high quality input images
for classification. Our findings confirmed this. Among the six architectures, we find that both EfficientNet and MobileNet had
outperformed other architectures in terms of accuracy, F1 score, and sensitivity, respectively. These results demonstrate the use of
CNNs as effective automated dermatological diagnostic tools. Nevertheless, the availability of large, diverse, high-quality datasets
is critical to their success. Dermatology's data driven nature limits promising potential of CNNs. Preprocessing and feature
extraction are important on common visual features present in dermatoimages. In addition, there is still a dearth of large, labelled
datasets. Almost all datasets available exist for educational use and not for use in the clinical setting, limiting generalizability of
trained models.

6. Future Works

With computer scientists collaborating with dermatologists, innovative data driven solutions for better detection and diagnosis of
dermatological disorders will be pioneered. These partnerships can be used to hone algorithms to meet clinical reality. What we
need now is to train around large, diverse, ethically sourced dermatological datasets. The trust of both patients and physicians will
be heavily dependent on protecting patient privacy and practicing ethically data collection practices. Model robustness and
applicability can be increased by expanding the datasets to rare dermatological conditions. By further improving the accuracy and
efficiency of dermatological diagnostics, incorporating next generation CNN architectures with improved computer vision
capabilities will be used. In particular, architectures that are tuned to work with imbalanced datasets and with image features that
are subtle will prove worthwhile. For physicians to accept automated diagnosis systems, development of automated diagnosis
systems must fit in with clinical workflows. To further expand the use of Al in dermatology, we need to address the issues of
interpretability, reliability and trustworthiness. Such systems have the potential to bring remote, accessible healthcare to under
resourced areas using DL powered diagnostic systems. These advancements could bridge gaps to dermatological care that are
more cost effective and more universally available. Although this study demonstrates the enormous potential of CNN in
dermatology, significant way remains to integrate these systems into the clinical practice. Data limitations are addressed; model
generalization is improved; and interdisciplinary collaboration is promoted as robust, automated dermatological diagnoses are
pursued. Future efforts can drive Al driven solutions to be both clinically effective as well as ethically sound by combining expertise
in computer vision with knowledge from dermatologists.
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