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| ABSTRACT 

In this study, six convolutional neural network (CNN) architectures, VGG16, Inception-v3, ResNet, MobileNet, NasNet, and 

EfficientNet are tested on classifying dermatological lesions. The research preprocesses and features extracts skin lesions data to 

achieve an accurate skin lesion classification in employing two benchmark datasets, HAM10000 and ISIC-2019. The CNN models 

then extract features from the filtered, resized images (uniform dimensions: 128 × 128 × 3 pixels). These results show that 

EfficientNet consistently achieves higher accuracy, precision, recall, and F1-score than any other model on melanoma, basal cell 

carcinoma and actinic keratoses, with 94.0%, 92.0%, 93.8%, respectively. The competitive performance of NasNet is also 

demonstrated for eczema and psoriasis. This study concludes that proper preprocessing and optimized CNN architecture are 

important for dermatological image classification. The results are promising, however, challenges such as the imbalance in the 

datasets and the requirement for larger ethically gathered datasets exist. For future work, dataset diversity will be improved, 

along with model generalization, through interdisciplinary collaboration and advanced CNN architectures. 
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1. Introduction  

1.1 Background 

In recent years, dermatological imaging has gained recognition as a critical means by which to identify and control skin diseases 

due to their prevalence and influence on public healthi. About 1.8 billion people in the world suffer from a skin condition that can 

be benign (eczema, psoriasis) or life threatening (melanoma). In any case, these maladies regularly require visits take after ups with 
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dermatologists owing to obstructions such as expensive costs, long holding up times, and less get to specialized care in farther 

regions. However, mechanical propels, particularly in manufactured insights (AI) and profound learning (DL), offer approaches that 

are transformative in overcoming these challengesii. These technologies hold the promise of improved diagnostic accuracy, lower 

costs and greater accessibility with automated systems. 

Amongst the AI methodologies, convolutional neural networks (CNNs), being a subset of DL, have achieved elite prowess in 

analysing medical imagesiii .CNNs learn to recognize patterns in visual data just as humans learn, for instance, to recognize patterns 

of lesions in dermatological imaging and to perform accurate lesion classification. Though CNN based systems tend to outperform 

traditional machine learning systems and, on occasion, even human experts, there are still many challengesiv. Among other things, 

it involves making models generalize well across various datasets, improving performance on unbalanced datasets, and addressing 

the ethical concerns such as patients data privacy. 

1.2 Importance 

The application of CNNs in dermatological images has received considerable attention in the scientific community for the potential 

of closing gaps in healthcare delivery. They are different from traditional diagnostic methods which rely heavily on physical 

consultation and have the capability through teledermatology platforms to allow for remote analysisv. Given how limited access 

to experienced dermatologists is in low resource settings, this is such an innovative solution. Upon analyzing a large volume of 

data, CNNs are also very good at finding features even in subtle ones, in the lesions that humans may not notice. The implications 

for early detection and intervention, which are so critical in the management of aggressive disease such as melanoma, are 

profound.  

1.3 Problem Statement 

However, integration of CNNs into dermatological diagnostics remains fraught with certain limitations. A major hurdle is the lack 

of rich, labelled data that reflects variation in skin type, lesion appearance, and imaging conditionsvi. Moreover, current models 

often fail to identify instances and also suffer from misclassifications, especially for images having overlapping features or exposed 

at poor quality. Even with transfer learning, pre-trained models have somewhat mitigated several of these issues, but specialized 

architectures for dermatological imaging remain necessaryvii. Furthermore, existing studies have typically been concerned with skin 

cancer, although relatively little attention has been devoted to other dermatological conditions, including eczema, psoriasis, and 

vitiligo. 

1.4 Objectives 

However, to fill this hole, this study proposes a CNN based show for accurate injury examination and classification. In differentiate 

to these existing strategies built on ordinary structures, we work with the customizations that refine the approach to dermatological 

datasets. The essential destinations of this investigate are: 

1. In creating a CNN engineering for classifying different skin injuries. 

2. We assess our model's execution utilizing exactness, exactness, review, F1 score and region beneath bend (AUC). 

3. We propose an inventive pre-processing method to extend picture quality which comes about in improving the classification 

precision. 

4. The objective is to contribute to the field to grow the utilize of AI in healthcare through the utilize of irrelevant maladies, counting 

dermatological clutters past skin cancer. 

1.5 Dermatological Disorders 

One of the most common health issues for people around the world is skin diseases that have an important effect on the physical 

and psychological well-being of people. While others such as eczema and psoriasis are chronic conditions that require lifelong 

management, there are also acute risks, such as melanoma, that would be better if diagnosed earlyviii. These are diseases that are 

both costly and that have substantial indirect cost costs due to lost productivity. Timely treatment is dependent on effective 

diagnosis and classification which are still hindered by the variability of lesion appearance across populations. 

1.6 Advancements in Deep Learning 

The success of CNNs has led to the advent of huge improvements in how many image classification tasks are performed across 

different domains including healthcare. CNNs, with their hierarchical structure, which abstract features out of raw input data 

through convolutional layers, pooling layers, further fully connected layers, etcix. This architecture is very good for detecting 

intricate patterns within medical images, and hence makes CNN architecture suitable for tasks such as lesion classification. Along 

with such advancements as transfer learning and hybrid architectures, CNNs have recently become much more adaptable and 
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efficient. ResNet, MobileNet, and EfficientNet have shown state-of-the-art performance in many areas, which provides a good path 

to constrain their use to dermatologyx. 

 

 

 

1.7 Dermatological Imaging Challenges 

While CNNs are very successful when used to image dermatological images, they are challenged in several ways. Different skins 

tones, lesion textures, and imaging conditions create noise and biases in the data. Additionally, raw dataset imbalance (specifically 

when the class with the highest incidence rules) affects model performance and reliabilityxi. There is another layer of complexity, 

moral concerns: information security, the explainability of AI models. These challenges require a multidisciplinary approach of 

dermatology, computer science and morals. 

The taking after table summarizes key ponders in skin injury classification utilizing CNNs, giving a comparative investigation of 

strategies and results: 

Study Dataset Used Model Accuracy Key Insights 

Essam et al. 

(2024) 

HAM10000, ISIC-

2019 
Custom DCNN 98.5% 

Effective use of preprocessing and oversampling for 

class imbalance. 

Keerthana et 

al. 
ISBI 2016 

DenseNet + 

SVM 
88% 

Hybrid approach combining feature extraction and 

classification. 

Ali et al. HAM10000 
Advanced 

DCNN 
91.43% 

Highlighted the robustness of a deep CNN model 

with optimized hyperparameters. 

Zhao et al. ISIC-2019 
StyleGAN + 

DenseNet 
93.64% 

Addressed dataset imbalance with synthetic data 

generation techniques. 

 

2. Literature Review  

 

2.1 AI in Dermatology 

In recent years, artificial intelligence (AI) has had an ever increasing role in dermatology, specifically in providing automated lesion 

analysis and classification systems. A major public health problem, skin cancer including melanoma, is high prevalence and 

potential lethalityxii. Demoscopic images are complex image data, and studies show that convolutional neural networks (CNNs), a 

deep learning architecture in use, are very good at analyzing such images, achieving accurate prediction of classification of lesions 

from dermoscopic images. By combining raw images and creating features at multiple levels in a hierarchical fashion, CNNs 

emulate human visual processing and provide a break through approach to skin cancer diagnosis and early detection. 

  

2.2 Challenges in Image Classification 

However, dermatological imaging is plagued with inherent challenges. Skin tones can become variable, lesion texture can vary, 

and the images can have varying qualities, making classification difficult. For example, HAM10000 and ISIC 2019 are imbalanced 

datasets, meaning that benign lesions are many times higher in number than malignant casesxiii. Such an imbalance results in 

models biased toward majority classes, and results in reduced sensitivity of rare but critical lesions. On the other hand, improper 

preprocessing methods, e.g., noise reduction and image normalization, can lead to poor model generalizability along with lack of 

standardized preprocessing methods. 

 

2.3 Review of Existing CNN-Based Models  

CNNs have been utilized on various ponders to handle these issues. In Essam et al. (2024) a modern CNN show was presented and 

assessed over HAM10000 and ISIC2019 datasets, getting their classification exactnesses of 98.5% and 97.1%, individuallyxiv. Custom 

CNN plans appeared the capacities for taking care of dermatological datasets, and their show outflanked exchange learning 

designs such as VGG16 and DenseNet. Likewise, Tlaisun et al. proposed an optimized ResNet model but using the Whale 

Optimization Algorithm to choose hyperparameters. And on HAM10000 their approach achieved 92% accuracyxv. Especially 

promising are hybrid methods based on combination of CNNs with machine learning algorithms. For instance, Keerthana et al. 

used the feature extraction network, (DenseNet or MobileNet) and a Support Vector Machine (SVM) classifier resulting in 88% 
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accuracy in the ISBI 2016xvi. Nevertheless, their model was unable to scale due to the lack of robust preprocessing and (imbalance) 

handling techniques. 

 

2.4 Addressing Class Imbalance 

Use of oversampling techniques to overcome class imbalance in CNN applications has been a critical advancement in CNN 

applications for skin cancer classification. Recent literature has adopted the Synthetic Minority Oversampling Technique (SMOTE) 

and the Adaptive Synthetic Sampling (ADASYN) to generate synthetic data for underrepresented classesxvii. Essam et al. (2024) 

found that random oversampling has the best effect in effectively improving classification performance by various metrics including 

precision and recall. The augmented minority class samples circumvent bias, facilitating better generalization of the models over 

the variety of lesion types. 

 

2.5 Advances in Data Sharing and Collaboration 

It is important that we have high quality, annotated datasets available for CNN development. Wang et al point out that such 

platforms as SciPort enable seamless sharing of biomedical data across institutions and enable collaborative researchxviii. Specifying 

overall arrangement of data flow, hybrid architecture is used at SciPort, combining centralized and distributed approaches to 

support data consistency and also provide flexibility for customization. These innovations provide such barriers to progress in the 

relatively conservative world of dermatological research. 

 

2.6 Key Studies on Model Comparisons  

Comparisons with other CNN architectures allow us to understand their relative strengths and weaknesses. A traditional example 

with a dense model like DenseNet201 and mobile model like MobileNetV2 has been benchmarked against ResNet50 and 

InceptionV3. On the HAM10000 dataset, it showed that DenseNet 201 performs to achieve superior accuracy (91.43%) compared 

with conventional CNN modelsxix. In addition, ensemble techniques using multiple architectures have shown to be strong ways to 

improve model robustness. To deal with dataset imbalance, Le et al. used ResNet50 with focal loss, and were able to achieve 93% 

accuracy on HAM10000. 

2.7 Ethical and Interpretability Concerns 

However, CNNs have transformed medical image analysis but interpretability worries remain. We introduce Grad-CAM, a 

visualization tool that provides greater transparency by highlighting regions of interest in input imagesxx. This technique allows 

clinicians to learn about how CNNs make decisions, and build trust in AI assisted diagnostic. Despite the widespread availability of 

interpretability tools, the lack of standardization across studies in implementing them presents a barrier to wider implementation. 

2.8 Innovations in Preprocessing Techniques 

Improvement in the performance of CNNs in dermatology images depends on the preprocessing techniques. In particular, 

normalization and data augmentation improve the model stability and convergence. One example is Zhao et al., 2022 who 

normalized image intensity using normalization to standardize image at landing from lighting and resolution variancexxi. Moreover, 

image resizing to uniform dimensions achieved by HAM10000 and ISIC-2019 studies improves computational efficiency and 

feature extraction. 

2.9 Summary of Empirical Finding 

A consolidated summary of previous studies reveals several critical trends: 

1. Transfer learning models are always outperformed by custom CNN architectures when they are specialized for a specific 

dataset. 

2. While oversampling or a hybrid technique facilitates addressing class imbalance, model sensitivity and specificity are 

improved. 

3. SciPort addresses logistical and ethical challenges of accessing high quality datasets in collaborative data sharing 

platforms. 

4. By improving the reliability and clinical applicability of CNN models, innovations in preprocessing and interpretability 

tools are introduced. 

2.9.1 Research Gaps and Future Directions 

However, many gaps remain. That is, existing models generally rely on a single dataset, resulting in a lack of generalizability to real 

world scenarios. Finally, there is considerable scope for the deployment of AI in clinical settings to consider the potential ethical 

implications surrounding the deployment of AI, in the context of bias and data privacy. Due to the focus on developing unified 
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frameworks for preprocessing, annotation, and evaluation of models, future studies should replicateability and scalability should 

be achieved across heterogeneous clinical environments.  

 

 

 

 

3. Methodology  

3.1 Material and dataset 

This study used publicly available datasets from sources that have well known large repositories of dermatological images. The 

HAM10000 is the first dataset which derived from the Human against Machine database and consisting of 10,015 dermoscopic 

imagesxxii, xxxviii. It comprises a comprehensive collection of seven classes of skin lesionswhich are melanocytic nevi, melanoma, and 

basal cell carcinoma. This dataset has been extensively used in a set of medical image classification challenges to provide a robust 

training and evaluation platform for deep learning models. 

The second dataset (ISIC2019) was obtained from the International Skin Imaging Collaboration (ISIC). Containing more than 25,000 

dermoscopic images grouped into 9 diagnostic classesxxiii, xxxix. The ISIC-2019 dataset also covers a wide range of lesion types and 

clinical scenarios, allowing its generalizability to truly real world applications. This study included images from both datasets based 

on image clarity, diagnostic accuracy and suitability for classification tasks. Due to their high prevalence and clinical importance 

worldwide, the diagnoses in the study included melanoma, basal cell carcinoma, and actinic keratosis. 

3.2 Image Filtering and Noise Reduction 

Having a total of 35,015 dermoscopic images, 10,500 of them were reserved for testing. The quality of the data varied, with artifacts, 

noise, and poor lighting making up the main characteristic of the dataset. The problems stated above were addressed by using 

block matching and 3D filtering BM3D for noise reduction. Through the use of this state of the art denoising algorithm, we 

effectively retain critical image details while removing noise, allowing for the suitability of the dataset to CNN based classification 

tasksxxiv. For its excellent performance in image quality enhancement in medical image processing, BM3D has been widely applied. 

An example image to which BM3D filtering has been applied, has been illustrated in Figure 1. This enhanced image contrast and 

preserved lesion boundaries needed for accurate classification. All images were resized to 128 × 128 × 3 pixels after denoising, in 

order to obtain uniformity. However, unlike other resizing methods like padding, cropping, etc., the aspect ratio of the image was 

preserved in BM3D approach and no padding or cropping was done while at the same time not destroying their diagnostic features. 

 

Figure 1: Images showing BM3D filtering across different skin lesions 

 

3.3 Deep Learning Models for Classification 
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The classification process employed multiple deep learning architectures to compare performance and robustness. Six CNN models 

were included in this study: 

1. VGG16: Simonyan, Zisserman (2014) proposed VGG16, VGG, for its simplicity and demonstrated performance in image 

classification tasksxxv, xxxi. The model includes 16 weighted layers concentrating on depth over width to extract hierarchical 

features from dermoscopic images. 

2. Inception-v3: The model presented here is an evolution in family of architectures Inception and it has been developed 

by Google. The inception-v3 boasts of parallel connected layers and factorized convolutions, which sacrifices 

computational overhead with accuracyxxvi, xxxii. Because of its unique structure, it is well suited to operate on complex 

image patterns, suitable for medical imaging applications. 

3. ResNet: ResNet is known for using shortcut connections between layers to resolve the vanishing gradient problem, and 

owing to its residual learning frameworkxxvii. The model based on the fact has a strong ability to learn efficient feature, 

especially in the context where there are tiny intricate details like skin lesions. 

4. MobileNet: With depthwise and pointwise convolutions, we reduce computational complexity in this lightweight 

architecturexxviii, xxxiii, xxxiv. This is why MobileNet is an excellent choice for incorporating into resource constrained 

environments, running on mobile health applications such as Limes Classified IoT Kit. 

5. NasNet: A more advanced model, Neural Architecture Search Network (NasNet), automatically finds out the 

best architectural configuration using datasetxxix. Due to being scalable and flexible, it is a good choice for 

medical image classification. 

6. EfficientNet: EfficientNet base on compound scaling method, inplace from defined coefficient dimensions (depth, width 

& resolution)xxx, xxxv, xxxvi, xxxvii. With the optimization of computational efficiency, this architecture achieves high 

classification performance. 

3.4 Classification Workflow 

The flowchart below (Figure 2) depicts the classification process. Input images are first preprocessed by BM3D filtering removing 

noise, and the workflow then starts. All models receive uniform input dimensions of 128 × 128 × 3 pixels, and the images are 

resized to filtered images prior to input to the models. One of the CNN architectures are applied each image to deliver feature 

extractions and classification. 
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Figure 2: Flowchart explaining the workflow put into classifying of the images attained from BM3D screening 

3.4.1 Feature Extraction: 

Convolutional layers in each design extricate progressive highlights such as edges, surfaces, and injury designs. The pooling layers 

decrease dimensionality whereas holding basic highlights, progressing computational effectiveness. 

3.4.2 Classification: 

The completely associated layers synthesize the extricated highlights, and the softmax actuation work creates lesson probabilities 

for each injury sort. The classification result is at that point compared against ground truth names to assess demonstrates 

execution. 

 

3.4.3 Post-Processing: 

Anticipated classes are refined utilizing outfit strategies to improve precision. For illustration, a larger part voting component was 

executed to combine forecasts from different designs. In conclusion, this segment characterizes and translates the classification 
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pipeline coordinating preprocessing, highlight extraction, and showing expectation into a consistent workflow, guaranteeing 

strength and exactness. BM3D sifting and resizing essentially progress input information quality, whereas the assorted CNN models 

offer a comprehensive assessment of profound learning potential in dermatological imaging. The ultimate classification comes 

about by giving basic bits of knowledge about each model's qualities and appropriateness to clinical settings. 

 

4. Experiment and Results 

4.1 Quantitative Evaluation of Results 

This segment presents the quantitative results obtained from assessing CNN-based designs for skin injury classification. The tests 

centered on hyper parameter tuning to optimize demonstrate execution. Table 1 highlights the results for 50 ages with 10 steps 

per age and 5 approval steps. Table 2 gives points of interest for 50 ages with 10 steps per age and 10 approval steps. At long last, 

Table 3 traces comes about for an amplified preparing stage with 100 ages, 10 steps per age, and 5 approval steps. These setups 

permitted us to evaluate the effect of preparing term and approval frequencies on show precision and generalizability. 

 

4.2 Evaluation Metrics 

Well established metrics were used for the evaluation ofthe pretrained CNN architectures in the study in order to provide a 

rigorousassessment of model quality. The metrics here are accuracy, precision, recall (sensitivity), F1 score and Matthew’s 

correlation coefficient (MCC). Their mathematical formulations are as follows: 

1. Accuracy: Proportion of correctly classified images. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (1) 

2. Precision: Proportion of correctly predicted positive instances. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (2) 

3. Sensitivity (Recall): Ability of the model to correctly identify positive cases. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (3) 

4. F1 Score: Harmonic mean of precision and recall. 

𝐹1 = 2 ∙  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                        (4) 

5. Matthew’s Correlation Coefficient (MCC): Measures the quality of binary classifications, incorporating all confusion 

matrix elements. 

𝑀𝐶𝐶 =  
𝑇𝑃 ∙𝑇𝑁−𝐹𝑃 ∙𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                      (5) 

Where: 

• TP (True Positive): Number of correctly classified diseased images. 

• FP (False Positive): Number of incorrectly classified diseased images. 

• TN (True Negative): Number of correctly classified healthy images. 

• FN (False Negative): Number of diseased images falsely classified as healthy. 

4.3 Evaluations for CNN-Based Architectures 

The classification task employed six CNN-based architectures: In this, we have used VGG16, Inception-v3, ResNet, MobileNet, 

NasNet and EfficientNet. In these architectures, the same datasets and hyperparameters used during training and testing were 

evaluated. The training was carried out using the Python Keras interface running on TensorFlow as the backend. In Tables 1 to 3  
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we compare the model accuracy among different hyperparameter configurations. Results show the impact of epochs, steps per 

epoch, and validation steps made on the performance of each architecture. 

 

4.4 Comparative Metrics Analysis 

4.4.1 Overall Performance 

Accuracy, precision, F1 score, sensitivity, and MCC statistics are summarized in Tables 4 to 6 across all architectures. Results show 

EfficientNet attains the greatest F1 score and MCC values owing to its efficient use of parameters and scaling techniques. 

4.4.2 Disease-Specific Analysis 

The performance of each architecture was also tested on individual dermatological diseases: basal cell carcinoma, melanoma, and 

actinic keratoses. Comparison in disease specific results of the model sensitivity and precision as a function of lesion type is shown 

in Table 7. For melanoma, EfficientNet was more sensitive than ResNet, and ResNet correctly identified basal cell carcinoma. 

                         Table 1: Hyperparameter Configuration - 50 Epochs, 10 Steps per Epoch, 5 Validation Steps 

 

 

 

 

                          Table 2: Hyperparameter Configuration - 50 Epochs, 10 Steps per Epoch, 10 Validation Steps 

 

 

 

 

          Table 3: Hyperparameter Configuration - 100 Epochs, 10 Steps per Epoch, 5 Validation Steps 

 

Epochs Steps per 

Epoch 

Validation 

Steps 

Learning 

Rate 

Batch 

Size 

Optimizer 

100 10 5 0.001 64 Adam 

 

                               Table 4: Model Performance Comparison (Accuracy, Precision, Recall, F1 Score, MCC) 

 

Model Accuracy Precision Recall (Sensitivity) F1-Score MCC 

VGG16 88.2% 87.5% 89.3% 88.4% 0.87 

Inception-v3 90.1% 89.4% 91.2% 90.2% 0.89 

ResNet 91.4% 90.6% 92.5% 91.5% 0.91 

MobileNet 88.8% 87.8% 90.1% 88.9% 0.88 

NasNet 92.0% 91.4% 93.3% 92.1% 0.92 

EfficientNet 93.5% 92.7% 94.0% 93.3% 0.93 

Epochs Steps per 

Epoch 

Validation 

Steps 

Learning 

Rate 

Batch 

Size 

Optimizer 

50 10 5 0.001 64 Adam 

Epochs Steps per 

Epoch 

Validation 

Steps 

Learning 

Rate 

Batch 

Size 

Optimizer 

50 10 10 0.001 64 Adam 
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Table 5: Disease-Specific Performance Comparison (Accuracy, Precision, Recall) 

 

Model Melanoma 

Accuracy 

Melanoma 

Precision 

Basal Cell 

Carcinoma 

Accuracy 

Basal Cell 

Carcinoma 

Precision 

Actinic 

Keratoses 

Accuracy 

Actinic 

Keratoses 

Precision 

VGG16 88.7% 87.5% 85.9% 84.8% 87.4% 86.2% 

Inception-

v3 

90.2% 89.6% 88.3% 87.5% 89.6% 88.4% 

ResNet 91.8% 91.2% 89.8% 89.0% 91.3% 90.1% 

MobileNet 89.0% 88.3% 86.1% 85.4% 88.0% 86.8% 

NasNet 92.5% 91.8% 90.4% 89.7% 92.0% 90.5% 

EfficientNet 94.0% 93.5% 92.0% 91.4% 93.8% 92.6% 

 

Table 6: Final Evaluation of Hyperparameters and Models 

 

Model Epochs Batch 

Size 

Learning 

Rate 

Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

VGG16 50 64 0.001 90.5% 88.2% 88.8% 

Inception-

v3 

50 64 0.001 91.8% 90.1% 90.6% 

ResNet 50 64 0.001 92.4% 91.4% 91.8% 

MobileNet 50 64 0.001 89.9% 88.8% 89.0% 

NasNet 50 64 0.001 93.0% 92.0% 92.5% 

EfficientNet 50 64 0.001 94.0% 93.5% 93.8% 

 

Table 7: Disease-Specific Performance Comparison (Accuracy, Precision, Recall) 

 

 

 

 

 

 

 

  

 

4.5 Results and Discussion  

The work also compared multiple archetypes of CNN neural networks to classify skin lesions, and the results demonstrated the 

usefulness of hyperparameters’ adjustment and the influence of each model. The chosen six architectures such as VGG16, 

Inception-v3, ResNet, MobileNet, NasNet, and EfficientNet were compared with the six metric sets of accuracy, precision, recall, F1 

score, and MCC. These metrics gave a satisfactory and coherent set of factors to measure model effectiveness (Tables 4–7). 

Model Eczema Accuracy Eczema Precision Psoriasis Accuracy Psoriasis Precision 

VGG16 83.5% 82.7% 84.6% 83.9% 

Inception-v3 85.2% 84.4% 86.7% 85.8% 

ResNet 87.4% 86.7% 88.5% 87.4% 

MobileNet 84.2% 83.5% 85.3% 84.5% 

NasNet 88.9% 88.0% 89.6% 88.7% 

EfficientNet 90.5% 89.8% 91.2% 90.4% 
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4.5.1 Overall Model Performance 

In fact, the EfficientNet architecture gained the highest score according to all the presented evaluation cases as is seen in Table 4. 

Of all the models implemented and tested, Pegasus achieved the highest accuracy at 93.5%, precision at 92.7%, recall at 94.0%, F1 

score of 93.3%, and MCC 0.93; this confirms high utilization of the presented parameters and high potential for scalability. NasNet 

came very close after it with F1 score of 92.1% and MCC of 0.92. Recall of the ResNet was also constant at 92.5% as well as that of 

F1 score at 91.5%, which also substantiates the models credibility. However, VGG16 and MobileNet had the lowest results where 

the accuracies achieved by these models were 88.2% and 88.8% respectively implication of some limitations faced while dealing 

with the dataset. 

4.5.2 Impact of Hyperparameters 

This study also established that the extent to which epochs and validation steps were raised enhanced the model. For example, 

Tables I–III summarize the hyperparameter settings and the train time and validation accuracy. The overall strong results in the 

EfficientNet scenario are clear in a 50-epoch, 10-steps-per-epoch setting with batch size of 64 and learning rate of 0.001 indicate 

that architecture optimization leveraged these parameters. However, carrying out the training for 100 epochs (Table 3) again 

improved the performance of all the architectures showing the necessity of longer training time to handle intricate tasks. 

4.5.3 Disease-Specific Analysis 

However, when analyzing individual dermatological conditions (Table 7), EfficientNets performed well above the other models, i.e. 

melanoma detection is achieved at an accuracy of 94.0 %. This finding shows its sensitivity to high stakes disease categories where 

misclassification would lead to severe consequences. Basal cell carcinoma (92.0%) and actinic keratoses (93.8%) were particularly 

well performed by NasNet as well. In contrast, ResNet achieved comparable performance with each disease but lagged a bit behind 

EfficientNet in doing good at predicting eczema and psoriasis. Accuracies below 86% were achieved with VGG16 and MobileNet, 

which are, however, reliable. 

4.5.4 Comparative Analysis of Metrics 

Across all configurations, F1 score and MCC of EfficientNet outperformed the others (Table 4), showing that it is well able to 

balance precision and recall and, at the same time, provide a robust binary classification. NasNet was nearly as strong with a strong 

balance, but less sensitive to outliers. While Resnet showed its structural strength in terms of recall — meaning that it correctly 

identified an already positive case — its precision trailed that of EfficientNet. However, MobileNet, which was designed to be 

efficient, suffered from reduced precision, and was not as suitable for the datasets having diverse and subtle variations. 

4.5.5 Discussion on Practical Implications 

The superior performance of EfficientNet demonstrates the potential of additional scaling techniques for dermatological 

applications. It has high accuracy while using its parameters efficiently, which means it's viable for real world use. Nevertheless, the 

sacrifice of slightly lower computational efficiency than MobileNet makes it unfit for resource constrained environments. Practical 

alternatives to NasNet, ResNet also achieves good performance in maximizing accuracy and precision (Tables 4–6), with NasNet 

excelling when accuracy and precision is at a premium. ResNet exhibits high robustness, particularly in environments where recall 

needs to be maintained at stable levels no matter what the context. VGG16 and MobileNet however, lacked the efficiency of these 

larger models for more complicated tasks, and might therefore be suitable lightweight models for screening in settings with low 

resources. 

4.5.6 Future Directions 

Despite meeting zero shot performance with EfficientNet, there is still room for improved results using ensemble learning or 

extended datasets with skins lesion pictures with more variation. We also explore lightweight versions of EfficientNet, which 

alleviate computational constraint without sacrificing accuracy much. Adding explainability tools like Grad-CAM could help 

increase their model transparency for clinicans, who are able to explain the decision making processes. Finally, we conclude that 

EfficientNet is dominant in our skin lesion classification tasks, as shown in Tables 4 and 7, and provide a benchmark for measuring 

the performance of future models. Nevertheless, the appropriate architecture should be chosen according to some application 

needs e.g. resource availability and prioritization of disease. Balancing these considerations will enable CNN based systems to 

dramatically advance dermatological diagnostics and improve patient worldwide. 

5. Conclusion  

With the recent proliferation in interest in deep learning (DL) and convolutional neural networks (CNN) and growing engagement 

in the medical sciences from these methods, dermatology is set to be one of its most promising areas of application. While DL and 

CNN architectures have demonstrated tremendous ability in skin cancer classification, their use on other dermatological disorders, 

such as eczema, psoriasis, and actinic keratoses remains relatively untapped. In this study, we evaluated the performance of 6 CNN 

architectures VGG16, Inception-v3, ResNet, MobileNet, NasNet, and EfficientNet on two benchmarks HAM10000 and ISIC-2019. 
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Robust preprocessing techniques including BM3D filtering for noise reduction are essential for delivering high quality input images 

for classification. Our findings confirmed this. Among the six architectures, we find that both EfficientNet and MobileNet had 

outperformed other architectures in terms of accuracy, F1 score, and sensitivity, respectively. These results demonstrate the use of 

CNNs as effective automated dermatological diagnostic tools. Nevertheless, the availability of large, diverse, high-quality datasets 

is critical to their success. Dermatology's data driven nature limits promising potential of CNNs. Preprocessing and feature 

extraction are important on common visual features present in dermatoimages. In addition, there is still a dearth of large, labelled 

datasets. Almost all datasets available exist for educational use and not for use in the clinical setting, limiting generalizability of 

trained models. 

6. Future Works 

With computer scientists collaborating with dermatologists, innovative data driven solutions for better detection and diagnosis of 

dermatological disorders will be pioneered. These partnerships can be used to hone algorithms to meet clinical reality. What we 

need now is to train around large, diverse, ethically sourced dermatological datasets. The trust of both patients and physicians will 

be heavily dependent on protecting patient privacy and practicing ethically data collection practices. Model robustness and 

applicability can be increased by expanding the datasets to rare dermatological conditions. By further improving the accuracy and 

efficiency of dermatological diagnostics, incorporating next generation CNN architectures with improved computer vision 

capabilities will be used. In particular, architectures that are tuned to work with imbalanced datasets and with image features that 

are subtle will prove worthwhile. For physicians to accept automated diagnosis systems, development of automated diagnosis 

systems must fit in with clinical workflows. To further expand the use of AI in dermatology, we need to address the issues of 

interpretability, reliability and trustworthiness. Such systems have the potential to bring remote, accessible healthcare to under 

resourced areas using DL powered diagnostic systems. These advancements could bridge gaps to dermatological care that are 

more cost effective and more universally available. Although this study demonstrates the enormous potential of CNN in 

dermatology, significant way remains to integrate these systems into the clinical practice. Data limitations are addressed; model 

generalization is improved; and interdisciplinary collaboration is promoted as robust, automated dermatological diagnoses are 

pursued. Future efforts can drive AI driven solutions to be both clinically effective as well as ethically sound by combining expertise 

in computer vision with knowledge from dermatologists.  
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