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| ABSTRACT 

Intraoperative problems significantly impact patient safety and surgical outcomes, with early detection of such problems being 

important to improve perioperative care. This article explores algorithms of machine learning to predict intraoperative 

complications using preoperative and intraoperative data from a large retrospective cohort of 121,898 adult surgical procedures 

at a single academic medical center between 2012 and 2016. To model the prediction of outcomes such as acute kidney injury 

(AKI), delirium, deep vein thrombosis (DVT), pulmonary embolism (PE), and pneumonia, five models were trained: logistic 

regression, support vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN). Combination 

datasets performed better than preoperative or intraoperative data alone. The highest AUROC was 0.91 (GBT; pneumonia), 0.85 

(aKI; GBT), 0.88 (DVT;  GBT), 0.76 (PE; DNN), and 0.999 (delirium; GBT) (Table 2). Including missing data variables yielded 

significant performance gain in all categories. SHapley Additive exPlanations (SHAP) discovered significant, patient-specific risk 

factors in a clinically relevant manner, thus enhancing interpretability. These findings demonstrate the potential for AI-driven 

predictive analytics to provide physicians with interpretable, real-time decision support, reduce complication rates and enhance 

perioperative safety overall. 
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1. Introduction 

Intraoperative complications are serious hazards during surgery, leading to increased mortality, prolonged length of stay, higher 

costs, and increased strain on perioperative resources (Hossain et al., 2024). It can also lead to problems such as cardiac 

instability and organ failure (Hasan, Farabi, et al., 2025). While a number of these are related to underlying patient or surgical risk 

factors, many of these issues can be prevented with early identification and treatment. While identifying high-risk patients during 

the surgical procedure remains a very challenging task, it provides an enormous opportunity to enhance treatment results with 

real-time clinical decision support in the operating room (Bratzler et al., 2005; Hamel et al., 2005; Healey et al., 2002; Turrentine 

et al., 2006). 

Recent advancements in machine learning (ML) and artificial intelligence (AI) have shown much promise in predicting adverse 

surgical outcomes (Hasan, Biswas, et al., 2025). Previous studies have used only intraoperative measures and preoperative patient 

variables to predict surgical complications and death; now models are increasingly being fed dynamic, real-time data. However, 

several limitations remain (Ferdousmou et al., 2025). First,  the contribution of intraoperative data alone to risk prediction is 

unknown, because most contemporary models do not differentiate between the predictive contribution of intraoperative 

information and preoperative information (Debnath et al., 2024). Second, more variability and missingness in intraoperative data 
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from actual practice are common; however, the implications of this disparity in model performance are often neglected (Das et 

al., 2023). Third, few of these studies have utilized model-agnostic interpretability approaches to distil complex machine learning 

outcomes into actionable insights that are clinically relevant and can assist anesthesiologists and surgeons in the operating room 

(Hofer et al., 2020; Wang et al., 2016; Warner et al., 2016). 

The outcomes of interest in this study were pneumonia, pulmonary embolism (PE), deep vein thrombosis (DVT), delirium, and 

acute kidney injury (AKI) (Chowdhury et al., 2023). These five issues were selected, due largely to their plasticity potential for 

change post-operatively, specifically with vigilance and minimization via early diagnosis (Chowdhury et al., 2023). These 

problems were important and relevant to the management of postoperative care in critical care surgical units, according to a 

recent study involving a large cohort of stakeholders (Abraham et al., 2021; Janssen et al., 2019; Vlisides & Avidan, 2019). 

Our study aims to (1) determine the predictive ability of specific machine learning models using preoperative, intraoperative, and 

combined data for postoperative complications (2) examine the relationship between prediction performance and the 

missingness of our input variables (3) provide model-agnostic, clinically relevant interpretations to assist both clinical decision 

making and care planning (Biswas et al., 2024). 

 

2. Methodology 

2.1 Sources of data 

We trained machine learning models to predict clinically relevant intraoperative events based on both retrospective and real-

time data obtained from adult patients who underwent surgery between 6/1/13 and 8/31/17 (Bhuiyan et al., 2025a). Data were 

extracted from the electronic anaesthesia record system (Meta Vision, iMDSoft) and the patient's electronic health record. The 

primary purpose was to identify intraoperative problems, with a view to improving perioperative safety (Bhuiyan et al., 2025a). 

The study was reviewed and approved by the institutional review board of the Washington University School of Medicine in St. 

Louis with the waiver of informed consent by virtue of the study's retrospective design (Arpita et al., 2025). Data from the study 

were not de-identified. The study was carried out in adherence to the Transparent Reporting of a Multivariable Prediction Model 

for Individual Prognosis or Diagnosis (TRIPOOD) reporting guideline for the data sources, preprocessing techniques and 

modelling pipeline (Ali Linkon et al., 2024; Arpita et al., 2025). 

 

2.2 Outcome Variable 

The objective of this study was to investigate whether five conditions: acute kidney injury (AKI), delirium, deep vein thrombosis 

(DVT), pulmonary embolism (PE), and pneumonia were clinically significant around the time of surgery and thereafter (Al 

Mahmud, Hossan, et al., 2025). We selected specific complications for early identification and management. To identify AKI, we 

used serum creatinine concentration and dialysis event data; to evaluate delirium, we used CAM-ICU findings. ICD-10 diagnosis 

codes were used for PE, DVT and pneumonia,  and patients without documented delirium evaluations were excluded (Al 

Mahmud, Dhar, et al., 2025). 

 

2.3 Data and Data Processing 

To prioritize preoperative and intraoperative variables to evaluate their predictive value for intraoperative morbidity was the 

goal of this study (Al Mahmud, Dhar, et al., 2025). Preoperative variables included age, sex, baseline physiological parameters, 

past medical history of diabetes and hypertension, type of anaesthesia and test results. During the surgical procedure, 

intraoperative data, including high-resolution time-series variables (vital signs, ventilator settings, and medication 

administration), were recorded at 1-minute intervals (Akter, Nilima, et al., 2024). Besides the list of variables and their availability 

in this data is a thorough description of data processing methods. Table 1 shows the variables and matching feature extraction 

techniques used for the model (Akter, Kamruzzaman, et al., 2024). 

 

Table 1. The variables and matching feature extraction techniques used for the model. 

 

Feature Category Description Data Processing 

Categorical Patient 

Information 

Gender, ethnicity, health score 

indices, physical and functional 

status, anesthesia and surgery 

types 

Converted using one-hot 

encoding 

Medical History (Categorical) Includes cardiovascular, 

pulmonary, renal, metabolic, 

neurological, and oncological 

conditions, along with smoking 

history 

Applied one-hot encoding for 

non-binary categories 
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2.4 Absent Information 

Missing data were then imputed with a dummy indication technique for each of the preoperative variables such that indicator 

vectors indicated the absence of a preoperative variable and empty fields were filled with zeros. The final dataset was the 

imputed dataset for the data level or the features level (Ahmed et al., 2025). When some of the time series records in patient 

rows were missing data, data-level imputation was applied, where the patient mean was used to impute the data. Feature-level 

imputation was used in cases where the entire time series of a given patient’s metric (e.g., the full set of temperature readings) 

was missing (Ahmed et al., 2025). Statistical characteristics of the metric were coded as missing and replaced with zeros in such 

cases (Ahmed et al., 2023). The absence of the time-series variables was then delayed through an indicator for whether the 

variable existed or was missing. Other imputation methods were explored, including fixed-value imputation methods (mean, 

median, and mode) and modern imputation methods (miss forest, k-nearest neighbor, and multiple imputation via chained 

equations) (Bhuiyan et al., 2025b). 

 

2.5 Feature Development 

The study employed a variety of feature engineering methods, including z-score normalization and one-hot encoding, to handle 

preoperative and intraoperative data (Chowdhury et al., 2023).  Nine statistical characteristics were calculated, and z scores were 

normalized for intraoperative time series.  A total of 712 features, comprising 81 unique dummy indicators, 505 features based 

on intraoperative factors, and 126 features based on preoperative variables, were retrieved from all clinical variables in the 

research (Das et al., 2023). 

 

3. ML Models 

Linear and nonlinear ML models were used to analyze three datasets: preoperative, intraoperative, and combined. In linear 

models, support vector machine and logistic regression were combined, while random forest, GBT, and DNN were used as 

nonlinear models (Goffer, 2025). 

 

3.1 Model Performance and Evaluation 

The performance of the model was assessed using five-fold cross-validation random shuffles. Where the results were fair, 

objective, the rare events were up-sampled according to the positive event-ratio of each complication (Goffer et al., 2025). The 

published study reported seven performance metrics: recall, accuracy, precision, and AUROC. Table 2 shows the cohort 

characteristics (Islam et al., 2025). The flow chart of cohort split and complication analysis is shown in Fig. 1. 

 

 

 

 

 

 

 

 

Preoperative Vitals Baseline measures such as blood 

pressure, heart rate, and oxygen 

saturation 

Standardized using z-score 

normalization 

Preoperative Lab Results Blood test indicators like 

albumin, creatinine, glucose, and 

white blood cells 

Standardized using z-score 

normalization 

Intraoperative Vitals Real-time vitals including 

multiple types of blood pressure, 

temperature, EEG data, and 

blood gases 

Summarized using statistical 

features (min, max, mean, etc.) 

and normalized 

Intraoperative Respiratory 

Parameters 

Data from ventilators, like 

respiratory rate, tidal volume, 

and anesthetic concentrations 

Statistical summarization and z-

score normalization 

Medications and Fluids During 

Surgery 

Use of drugs such as 

norepinephrine, epinephrine, and 

vasopressin 

Summarized using statistical 

features and normalized 
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Table 2.  Cohort characteristics. 

Category Description Value 

Age Mean (SD), y 54.4 (16.8) 

Sex Female 56914 (50.9%) 

Race White 82533 (73.8%) 

Height Median (IQR), cm 170 (163-178) 

Weight Median (IQR), kg 83 (69-100) 

BMI Median (IQR) 28 (24-34) 

Functional capacity, METS <4 17859 (16.0%) 

Functional capacity, METS 4–6 24978 (22.3%) 

Functional capacity, METS >6 3094 (3.0%) 

Functional capacity, METS Missing 64632 (57.8%) 

ASA physical status Grade 1 6828 (6.1%) 

ASA physical status Grade 2 43758 (39.1%) 

ASA physical status Grade 3 48809 (43.6%) 

ASA physical status Grade 4 11858 (10.6%) 

ASA physical status Grade 5 609 (0.5%) 

ASA emergency status Emergency 8544 (7.6%) 

Types of surgery Cardiac 3677 (3.3%) 

Types of surgery Otolaryngology 3186 (2.8%) 

Types of surgery General 6624 (5.9%) 

Types of surgery Gynecology 4077 (3.6%) 

Types of surgery Neurosurgery 3776 (3.4%) 

Types of surgery Orthopedic 10416 (9.3%) 

Types of surgery Thoracic 2568 (2.3%) 

Types of surgery Urology 4889 (4.4%) 

Types of surgery Vascular 2669 (2.4%) 

Types of surgery Others 1825 (1.6%) 

Types of surgery Unknown 68181 (60.9%) 

Comorbidity Hypertension 23762 (21.2%) 

Comorbidity Pacemaker or AICD 2061 (1.8%) 

Comorbidity Prior stroke/TIA 1167 (1.0%) 

Comorbidity Peripheral artery disease 1920 (1.7%) 

Comorbidity Deep venous thrombosis 3597 (3.2%) 

Comorbidity Pulmonary embolism 1281 (1.1%) 

Comorbidity Diabetes mellitus 9331 (8.3%) 

Comorbidity Outpatient insulin use 7220 (6.5%) 

Comorbidity Chronic kidney disease 5949 (6.3%) 

Comorbidity Ongoing dialysis 3929 (4.5%) 

Comorbidity Pulmonary hypertension 2543 (3.3%) 

Comorbidity COPD 4312 (4.9%) 

Comorbidity Asthma 4883 (5.4%) 
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Fig. 1. Flow chart of Complication Analysis and Cohort Split (Kamal et al., 2025). 

 

3.2 Model Interpretation 

To interpret the model predictions, the study employs Shapley Additive exPlanations (SHAP). SHAP is a model-agnostic method 

for explaining model predictions (Mia Md Tofayel Gonee et al., 2020). The data were interpreted using SHAP (Shapley Additive 

exPlanations) value of individual trait  that is, the number of units of deviation of that trait that increased the projected risk of a 

given complication. A positive SHAP score suggests a higher chance of complications, while a negative SHAP value indicates a 

reduced probability of complications. The size of the SHAP values indicated the contribution of the feature to prediction 

performance (Md Habibullah Faisal, 2022). In order to have clinical relevance, the SHAP values are transferred from the ML 

feature space back to the domain of interest (Khair et al., 2024). To focus on major attributes, the top ten characteristics were 

selected and retained based on their SHAP values (Mahmud, Orthi, et al., 2025). To contextualize intraoperative time series 

measurements by depicting their presenting statistical moments, the visualization aided in interpreting the model by showing 

cumulative risk accrued for each of the top ten clinical variables, and, for each of these variables, compared risk contributions for 

each of these variables against those for the average patient who was not a member of that complication cohort (Mahmud, 

Barikdar, et al., 2025). 

 

3.3 Statistical Analysis 

In this study, we performed two separate analyses. The first trial utilized preoperative datasets, data for intraoperative and 

combined datasets. The model was subsequently built and evaluated based on the features present in each dataset (Manik et al., 

2025). In our second study, we explored the fact that we made improvements in prediction without increasing performance 

based on variables with varying levels of missingness (Khair et al., 2025). Each characteristic was ordered in ascending order of 

the rates of missingness (Md Ekrim et al., 2024). As described in the Analysing the Data section, we used those data available for 

all patients (complete case analysis, total missing rate 0%) before incorporating further variables (e.g. those with missingness). 

and generated it with both missing rates and feature sums predictable (Kaur et al., 2023). 

 

4. Results 

This cohort study included 111888 individuals with acute kidney injury (AKI), dialysis-induced pneumonia (DVT), and pneumonia. 

Pneumonia, AKI, DVT, and delirium were the top-performing GBT machine-learning models, whereas PE was best identified by 

DNN. The AUROCs for pneumonia, AKI, DVT, PE, and delirium were 0.905, 0.848, 0.881, and 0.762, respectively. The fake 

indication method worked great with the pneumonia dataset. The composite data set showed superior predictive performance 

than either the preoperative data set or the intraoperative data set. The best performance across all challenges was shown using 

a hybrid data set. But models that used only preoperative data performed nearly as well. With the introduction of more 

features, the AUROC increased progressively as the missing rates increased. 

Some of the very relevant pneumonia features, such as pads for early mobilization, pulmonary hygiene with a respiratory 

therapist, scheduled bronchodilators and continuous epidural analgesia, accessory oxygen, continuous observation and low 
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threshold for antibiotic treatment, presented in the ML output explanations are the kind of symptoms that will be leading for a 

timely clinical intervention in the intensive care settings. Compared to the community of individuals without disease, nine of the 

top 10 clinical characteristics with the most elevated SHAP values suggested a potential risk of pneumonia. Adding these top 10 

clinical markers to the algorithm, the overall conditional probability of a pneumonia diagnosis may increase from 0.500 to 0.920. 

Fig. Two displays the results from the machine learning models. Fig. 3 shows the complication-specific model interpretation. 

 

  

  
Fig. 2. Results of Machine Learning Models. 
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Fig. 3. Complication-Specific Model Interpretation 

 

5. Discussion 

This study utilized a machine learning approach using preoperative and intraoperative surgical data to predict postoperative 

surgical complications. GB and DNN were the best performing algorithms for PE, whereas gradient boosting tree and DNN 

performed best for pneumonia, AKI, DVT, and delirium. The data availability time over the perioperative continuum can further 

assist in predicting the potential clinical trajectory of the patient. Separate models were generated from preoperative, 

intraoperative, and combined data sets. These models may be used by practitioners to predict the preoperative and 

postoperative morbidities that help formulate care management, followed by the objectives and strategies. Also in the study, it 

was shown how the performance of predictions improved when variables were missing, and what effect that had on prediction 

performance. To generalize the interpretation tool to clinical communication, a model-agnostic interpretation method was also 

explored in this study for describing residues of clinical features that could lead to post-operative complications. This 

visualization style might help practitioners to evaluate evidence-based treatment procedures and ascertain important 

characteristics that influence the likelihood of complications. Another application of the prediction methodology could also be 

cognitive support, highlighting other clinical nuances, and validating/facilitating the estimation of the patients’ risk for surgical 

complications for the attending. 

 

6. Limitations 

Limitations of this study include the use of surgical patient data from a single institution and not adjusting for the length of the 

procedure, planned surgical description, intraoperative variables, and commonly used drugs. There were too few patients to 

perform a subgroup analysis, and goal outcomes were identified with administrative data instead of human examination of the 

medical records. Current effort in an attempt to overcome these constraints is focused on performing data matches with manual 

quality health record checks. 

 

7. Conclusions 

These results indicate that machine learning can be deployed and implemented in the proposed machine learning framework 

for postoperative complications prediction with interpretability features. This framework could be implemented to deliver 

model-agnostic interpretation output within real-time clinical decision support systems and anticipatory management tools to 

guide practitioners in preparing postoperative directions and resource allocation. 
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