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| ABSTRACT 

This article explores the challenges of managing cardinality in observability data within modern distributed systems. Cardinality 

- the number of unique values in fields such as metric labels, log attributes, and trace identifiers presents a significant operational 

concern for organizations maintaining large scale systems. When left unmanaged, high cardinality can lead to substantial 

performance degradation and cost escalation. It  examines the nature of cardinality explosion, where unique value combinations 

grow uncontrollably, and its impact on query performance, storage costs, processing efficiency, and alert management. It then 

presents comprehensive strategies for effective cardinality management, including strategic label design, aggregation 

techniques, sampling methods, data lifecycle policies, cardinality-aware tooling, and data partitioning approaches. Through case 

studies and research findings, the article demonstrates how organizations have successfully implement these strategies to 

maintain essential visibility while dramatically improving system performance and reducing infrastructure costs. The work 

concludes with guidance on monitoring cardinality itself as a critical operational metric to ensure sustainable observability 

practices. 
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Introduction 

In today's complex distributed systems, observability has become a cornerstone of reliable operations. However, as systems scale, 

one challenge consistently emerges as a critical concern: cardinality management. A comprehensive industry survey spanning 

organizations of various sizes revealed that the majority of DevOps teams managing large-scale distributed systems identified 

cardinality-related challenges as a primary operational concern, with many reporting significant cost overruns directly attributable 

to unmanaged cardinality. This article explores the nuances of cardinality in observability contexts, its potential pitfalls, and proven 

strategies for maintaining efficient monitoring systems that have demonstrated substantial cost savings and performance 

improvements when properly implemented. 

Understanding Cardinality in Observability 

Cardinality refers to the number of unique values a specific field can take within your observability data. These fields might include 

labels or tags in metrics, attributes in logs, and context information in traces. While high cardinality provides detailed insights, it 

comes with significant computational and storage costs. Every unique combination creates a new time series that must be indexed, 

stored, and queried—potentially leading to exponential growth in resource consumption. 

A detailed performance analysis published in "Navigating Scalability Challenges in Distributed Systems" demonstrates that typical 

observability platforms experience increased query latency for each doubling of cardinality in the underlying dataset. The same 

research indicates that organizations implementing proper cardinality controls reported a substantial reduction in mean time to 

resolution (MTTR) for production incidents compared to those with unmanaged cardinality. This improvement stems largely from 
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the ability to query and analyze observability data more efficiently without the performance degradation associated with high-

cardinality datasets. 

The Challenge of Cardinality Explosion 

Cardinality explosion occurs when the number of unique value combinations grows uncontrollably. Common culprits include user 

IDs attached to metrics, session identifiers in logs, request-specific values in trace spans, and dynamically generated tags or 

attributes. For instance, an e-commerce platform tracking purchase events with unique customer IDs as labels might generate 

millions of distinct time series, overwhelming the monitoring infrastructure and drastically increasing costs. 

Category Examples 

User Data User IDs, session IDs, account numbers 

Infrastructure Container IDs, pod names, instance IDs 

Network IP addresses, request IDs, trace IDs 

Application Request parameters, URL paths, payload IDs 

Table 1: Common High-Cardinality Sources [1]  

According to research published in "Optimizing Prometheus Storage: Handling High Cardinality Metrics at Scale," a production 

Kubernetes environment with numerous nodes generated a significant number of time series when using default instrumentation. 

After adding just three high-cardinality labels to key metrics (including pod-specific identifiers, user session IDs, and request tracing 

information), the same environment produced many times more time series—a substantial increase that resulted in storage 

requirements growing dramatically over the retention period. The study documented a considerable increase in query latency and 

found that common dashboard operations that previously completed quickly were now taking much longer. 

This phenomenon is not limited to container orchestration environments. The "Enhanced Observability of Cloud-Native 

Applications" research paper documents a case study where a financial services application with numerous microservices saw its 

observability data volume increase substantially after adding customer journey tracking with high-cardinality user identifiers. This 

significant increase resulted in a large monthly cloud storage bill increase, prompting an emergency cardinality remediation 

project. 

Impact of Unmanaged Cardinality 

Failing to address high cardinality leads to several significant problems that impact both performance and cost: 

Degraded Query Performance 

High-cardinality data increases index size and query complexity, leading to slower dashboard rendering and alert evaluations. The 

"Optimizing Prometheus Storage" article presents benchmark data showing that complex aggregate queries across high-

cardinality dimensions experience significant performance degradation when comparing a well-managed setup (with fewer time 

series) to an unmanaged one (with many more time series). This degradation manifests as increased dashboard load times and 

alert processing delays. These delays directly impact operational responsiveness, with incident detection times increasing during 

critical outages. 

Aspect Impact 

Query Performance Increased latency, slower dashboards and alerts 

Storage Exponential growth, higher costs 

Processing Increased CPU/memory usage, ingestion bottlenecks 

Alert Management Alert fatigue, numerous low-value notifications 

System Scalability Requires more infrastructure resources 

Table 2: Impact of High Cardinality on Observability Systems [2]  
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Storage Cost Escalation 

Each unique time series requires separate storage, potentially causing exponential growth in storage requirements. According to 

"Enhanced Observability of Cloud-Native Applications," the compression ratio for high-cardinality time series data is typically worse 

than for low-cardinality data due to reduced pattern regularity. The research quantifies average storage requirements per time 

series per day at standard resolution. Extrapolating from these figures, an increase from thousands to millions of time series would 

inflate storage needs considerably—translating to substantial additional storage per month. 

In cloud environments where observability data is frequently stored in hot storage for fast query access, this additional storage 

requirement translates to increased monthly costs according to aggregated pricing data from major cloud providers. For large 

enterprises monitoring hundreds of services, the "Understanding High Cardinality in Observability" resource documents cases 

where unmanaged cardinality increased annual monitoring costs significantly. 

Processing Overhead 

Ingestion pipelines must process and index each unique combination, potentially leading to bottlenecks. The "Optimizing 

Prometheus Storage" benchmarks show that Prometheus servers processing high-cardinality metrics experience CPU utilization 

increases compared to cardinality-optimized deployments. Memory consumption increases even more dramatically, with high 

percentile memory usage growing substantially when comparing optimized versus unoptimized deployments. This additional 

resource consumption directly translates to higher infrastructure costs, with the average Prometheus cluster requiring considerably 

more computational resources to handle the same metric volume after a cardinality explosion event. 

Alert Fatigue 

Excessively granular alerts based on high-cardinality dimensions can trigger numerous notifications, leading to alert fatigue. The 

"Understanding High Cardinality in Observability" analysis reveals that teams dealing with high-cardinality alerts experienced much 

higher alert volumes compared to those with optimized cardinality. More concerning is that the majority of these additional alerts 

were ultimately classified as low-value or redundant. The same study found that SRE teams receiving many alerts per week 

experienced a significant decrease in meaningful response rates and reported spending substantial time on alert triage rather than 

addressing actual system issues. 

Effective Cardinality Management Strategies 

1. Strategic Label and Attribute Design 

Before instrumentation, carefully consider which dimensions provide actionable insights. The "Navigating Scalability Challenges in 

Distributed Systems" research includes a case study of a major e-commerce platform that reduced its total time series count 

dramatically by implementing strategic label design—a substantial reduction that maintained all essential service-level visibility 

while dramatically improving system performance. 

Avoid high-uniqueness fields like user IDs, IP addresses, and session IDs that rarely provide aggregate value as metric labels. 

According to the "Understanding High Cardinality in Observability" resource, removing just these three high-cardinality identifiers 

from core service metrics resulted in significant cardinality reductions in typical web applications, while maintaining all essential 

operational visibility. 

Use bucketing to replace continuous values (like request duration) with buckets (e.g., "0-10ms", "10-100ms"). The "Enhanced 

Observability of Cloud-Native Applications" paper documents a case where implementing standard histogram buckets for latency 

measurements instead of raw values reduced cardinality substantially while maintaining statistical accuracy within an acceptable 

margin of raw data insights. 

Prefer enumerated values where possible, using fixed sets of values rather than unbounded strings. The "Optimizing Prometheus 

Storage" article recommends limiting enum cardinality based on performance testing that showed each additional value beyond 

a certain threshold increased query times for common aggregation operations. 

2. Implement Aggregation Techniques 

Reduce cardinality through strategic aggregation at various stages of your observability pipeline. According to "Navigating 

Scalability Challenges in Distributed Systems," implementing pre-aggregation at the source before sending metrics to observability 

platforms reduced data volume substantially in high-throughput services while preserving statistical accuracy within an acceptable 

margin of raw data insights. The technique was particularly effective for high-frequency metrics, where appropriate sampling rates 

preserved nearly all anomaly detection capability. 

Statistical aggregation using percentiles, averages, and counts instead of individual measurements provides another powerful 

approach. The "Enhanced Observability of Cloud-Native Applications" presents benchmark results showing that using summary 
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statistics for high-cardinality fields reduced storage requirements significantly with negligible loss of analytical capability. The 

paper specifically recommends using several standard percentiles as a set that balances storage efficiency with analytical power. 

Down-sampling reduces the resolution of historical data to maintain trends while reducing storage needs. The "Understanding 

High Cardinality in Observability" resource details an automated down-sampling strategy where metrics maintain different 

resolutions for different time periods. This approach resulted in substantial storage savings compared to maintaining full resolution 

throughout the retention period, with minimal impact on historical analysis capabilities. 

Strategy Complexity Storage Benefit Performance Benefit 

Label Design Low High High 

Aggregation Medium Very High Medium 

Sampling Low Medium Low 

Lifecycle Policies Medium High Medium 

Cardinality-Aware Tools Medium High High 

Data Partitioning High Medium Very High 

Table 3: Cardinality Management Strategy Comparison [3]  

 

3. Apply Sampling Methods 

Not all data points need permanent storage, and intelligent sampling provides a powerful tool for managing cardinality. Head-

based sampling captures a percentage of requests at the beginning of processing. According to "Optimizing Prometheus Storage," 

production systems implementing head-based sampling at appropriate rates for high-volume services achieved significant 

cardinality reductions while maintaining statistically valid insights with an acceptable margin of error for common aggregate 

metrics. 

Tail-based sampling captures only interesting events (like errors or slow requests). The "Enhanced Observability of Cloud-Native 

Applications" study found that intelligent tail-based sampling captured nearly all anomalous behaviors while reducing trace volume 

substantially compared to full-fidelity collection. The approach proved particularly effective for distributed tracing, where complete 

end-to-end traces were preserved for all requests exceeding predefined latency thresholds or generating error conditions. 

Dynamic sampling adjusts sampling rates based on system load or event frequency. The "Navigating Scalability Challenges in 

Distributed Systems" research documents an adaptive sampling approach that automatically scales sampling rates based on traffic 

patterns and error rates. This technique maintained relatively constant trace volume despite significant traffic variations between 

peak and off-peak periods, reducing infrastructure costs considerably compared to static sampling approaches. 

4. Implement Data Lifecycle Policies 

Managing data retention based on utility has become a critical strategy in modern observability platforms. Research published in 

"OBSERVABILITY IN CLOUD-NATIVE ENVIRONMENTS: CHALLENGES AND SOLUTIONS" demonstrates that organizations 

implementing structured data lifecycle policies reported significantly lower storage costs compared to those with uniform retention 

policies. The study examined numerous enterprise environments and found that strategic retention policies not only reduced costs 

but also improved query performance due to reduced data volumes and more efficient storage utilization. 

4.1 Tiered Storage 

Moving older data to less expensive storage tiers provides substantial cost benefits while preserving long-term analytics 

capabilities. According to "Designing Tomorrow's Observability: A Software Architect's Guide," a three-tiered approach to 

observability data storage yielded considerable reduction in monthly storage costs across the surveyed organizations. The study 

documented that hot storage containing the most recent days of data typically satisfied the majority of all queries while 

representing only a small portion of the total data volume. The remaining data, when moved to warm and cold storage tiers, 

maintained availability for less frequent historical analysis while dramatically reducing infrastructure costs. 

The implementation of tiered storage requires careful consideration of access patterns and retrieval requirements. The research 

indicates that organizations experienced optimal results when aligning their tier transitions with natural usage boundaries—

keeping data in hot storage for operational troubleshooting (typically days or weeks), warm storage for trend analysis and monthly 
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reporting (weeks to months), and cold storage for compliance and long-term pattern detection. A financial services case study 

featured in the research documented substantial storage cost reductions after implementing a tiered approach while maintaining 

all required query capabilities. 

4.2 Selective Retention 

Keeping high-cardinality data for shorter periods than aggregate metrics optimizes both cost and performance. "Exploring Metric 

Retention Strategies in Distributed System Monitoring" presents findings from a study of numerous production environments that 

implemented differential retention periods based on cardinality classes. The research found that high-cardinality metrics (those 

with many unique label combinations) typically provided diminishing analytical value beyond a short-term horizon, while low-

cardinality aggregates retained operational significance for much longer periods. Organizations implementing selective retention 

reduced their overall storage footprint considerably compared to uniform retention approaches. 

The study recommends a structured approach to retention planning, with retention periods inversely proportional to cardinality. 

A notable implementation described in the research involved a cloud service provider that retained high-cardinality metrics for 

days, medium-cardinality metrics for weeks, and low-cardinality metrics for months. This approach provided significant storage 

reduction compared to their previous uniform retention policy while maintaining all essential historical visibility for service-level 

analysis. 

4.3 Automated Cleanup 

Establishing processes to purge stale data automatically ensures consistent resource utilization and prevents storage bloat. 

According to "Streamlined Observability: Implementing Automated Data Management," organizations implementing automated 

cleanup processes experienced less unplanned storage growth compared to those relying on manual maintenance. The research 

advocated for automated detection and removal of "zombie" metrics—time series that no longer receive updates due to code 

changes, decommissioned services, or temporary instrumentation. A technology company featured in the case study identified 

that a meaningful portion of their stored time series were inactive, consuming storage without providing operational value. 

The implementation of automated cleanup requires establishing appropriate identification criteria for stale data. The research 

suggests configuring detection thresholds based on expected update frequencies, with systems automatically flagging series that 

haven't received new data points in at least three times their normal update interval. Multiple organizations documented in the 

study implemented "dead series detection" that automatically archived and eventually purged time series with no updates over 

configurable thresholds, typically days or weeks depending on the metric type. This approach ensured storage resources remained 

focused on actively used metrics while maintaining historical data for recent changes. 

5. Leverage Cardinality-Aware Tools 

Modern observability platforms offer built-in cardinality management capabilities that can dramatically reduce the operational 

burden of handling high-cardinality data. "OBSERVABILITY IN CLOUD-NATIVE ENVIRONMENTS: CHALLENGES AND SOLUTIONS" 

surveyed many organizations and found that those using cardinality-aware platforms reported substantially fewer performance 

incidents related to cardinality issues compared to those using general-purpose monitoring solutions. The research emphasized 

that purpose-built observability tools increasingly incorporate cardinality management as a core architectural consideration rather 

than an afterthought. 

5.1 Metric Transformation 

Tools like Prometheus relabeling can filter or modify high-cardinality labels before storage. A comprehensive analysis in 

"OBSERVABILITY IN CLOUD-NATIVE ENVIRONMENTS: CHALLENGES AND SOLUTIONS" documented an e-commerce platform that 

implemented strategic relabeling rules to reduce cardinality significantly in their Kubernetes environment. The platform used metric 

relabeling to replace highly variable identifiers with more stable values—transforming pod-specific identifiers into deployment 

names, converting unique user IDs into user segments, and mapping continuous values into discrete buckets. These 

transformations reduced the number of unique time series substantially while maintaining essential visibility into system 

performance. 

The research details specific relabeling techniques that proved most effective in production environments. These included 

dropping transient identifiers through label exclusion, replacing high-cardinality values with stable alternatives, keeping only a 

defined subset of important values, and implementing value mapping to transform continuous measurements into bucket-based 

approaches. Organizations implementing these techniques saw notable reduction in storage costs and improvement in query 

performance. The study specifically recommends implementing relabeling at the collection stage rather than at query time, as this 

approach prevents the storage overhead of high-cardinality data entirely rather than merely hiding it during analysis. 
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5.2 Intelligent Indexing 

Solutions like Elasticsearch or Loki can optimize for high-cardinality workloads through specialized indexing strategies. "Designing 

Tomorrow's Observability: A Software Architect's Guide" details how modern log management systems employ specialized 

indexing techniques to handle high-cardinality data more efficiently than traditional approaches. The research describes how Loki's 

streaming log architecture separates index and content storage, resulting in much smaller indexes compared to document-

oriented logging systems when handling high-cardinality data. This architectural approach significantly reduced query times for 

high-cardinality fields, with benchmarks showing faster queries for selective operations across large volumes of log data. 

The study also documents effective indexing strategies for Elasticsearch deployments handling observability data. Organizations 

implementing custom field mappings and controlled indexing reported better query performance for high-cardinality fields 

compared to default configurations. The most effective techniques included limiting indexed fields to only those required for 

searching, using keyword types instead of text types for identifier fields, implementing custom routing based on stable dimensions, 

and applying index throttling to prevent indexing operations from overwhelming cluster resources during high-cardinality 

ingestion spikes. A media streaming service featured in the case study reduced their Elasticsearch cluster size substantially after 

implementing these optimizations while maintaining query performance within their SLA requirements. 

5.3 Cardinality Limiters 

Many platforms can automatically limit the number of unique combinations to prevent runaway cardinality. "Exploring Metric 

Retention Strategies in Distributed System Monitoring" details how implementing cardinality limiting mechanisms prevented 

unintentional explosions by establishing guardrails around metric growth. The research found that organizations implementing 

automated cardinality controls experienced fewer performance-related incidents stemming from unexpected cardinality growth. 

These controls typically took the form of configurable limits on the number of unique label combinations permitted for a given 

metric, with new combinations being rejected once thresholds were exceeded. 

The study documents a telecommunications provider that implemented custom cardinality limiting middleware in their metrics 

pipeline, configured to cap the number of unique series per metric at predefined thresholds based on the metric's operational 

importance and expected cardinality. This approach reduced unexpected infrastructure scaling events and virtually eliminated 

performance degradation incidents related to cardinality. Another implementation described in the research used adaptive 

sampling rates that automatically increased sampling for high-cardinality metrics during periods of rapid growth, ensuring that 

essential data remained visible while preventing storage saturation. The research suggests establishing different cardinality 

thresholds for different metric types, with infrastructure metrics typically having lower limits than application metrics due to their 

foundational importance and consistent query patterns. 

6. Partition Data Strategically 

Dividing and conquering observability data through intentional partitioning strategies can substantially improve both storage 

efficiency and query performance. "Streamlined Observability: Implementing Automated Data Management" presents evidence 

that properly partitioned observability systems achieved significant query performance improvements for common operations 

compared to monolithic approaches. The research indicates that strategic partitioning provides compounding benefits beyond 

simple distribution of data, including improved retention management, more efficient compression, and better resource utilization 

across distributed systems. 

6.1 Time-Based Partitioning 

Splitting data into time-based chunks enables efficient querying and lifecycle management. "Practical Applications of Cloud 

Computing for Comprehensive Observability" demonstrates that time-based partitioning strategies significantly improved query 

performance for observability data, with properly configured time boundaries resulting in faster query execution for common time-

range operations. The research documents how aligning partition boundaries with natural usage patterns—hourly, daily, or weekly 

segments—minimized the number of partitions that needed to be scanned for typical queries. A technology platform described 

in the study implemented short-term block partitioning for recent data and daily partitioning for older data, resulting in a 

substantial reduction in average query times for dashboard rendering. 

The research emphasizes that time-based partitioning enables more granular lifecycle management beyond performance 

improvements. Organizations implementing age-based partition policies reported storage savings compared to object-level 

retention rules by allowing more precise control over data expiration. The most effective implementations described in the study 

used automated partition management that transitioned partitions through storage tiers based on age, with older partitions 

automatically migrating to less expensive storage while maintaining query accessibility. This approach ensured that resource 

allocation aligned with data value throughout its lifecycle, with the most recent and frequently accessed data receiving priority 

resources. 
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6.2 Service-Based Sharding 

Distributing data across multiple instances based on service boundaries improves scalability and isolation. "Designing Tomorrow's 

Observability: A Software Architect's Guide" presents findings from organizations implementing service-based sharding for 

observability data, documenting average query latency reductions by allowing queries to target only relevant service partitions 

rather than scanning entire datasets. The research examines a large-scale retail platform that shifted from a centralized metrics 

repository to a federated approach organized by business domain, resulting in both improved performance and better operational 

isolation between services. 

The study recommends implementing service-based sharding once centralized systems reach a certain threshold of active time 

series, based on documented performance degradation past this level on typical hardware configurations. The most successful 

implementations maintained cross-service query capabilities through metadata synchronization while keeping primary data 

separated by service boundaries. This approach provided both the performance benefits of sharding and the analytical capabilities 

of a unified system. The research specifically highlights the operational resilience benefits of service-based sharding, with incidents 

affecting specific services having minimal impact on observability for unrelated systems. A media streaming platform documented 

in the case study maintained high observability availability despite experiencing several major service incidents that would have 

affected their entire monitoring infrastructure under their previous centralized approach. 

6.3 Hierarchical Organization 

Structuring data to enable drill-down from aggregates to details balances performance and flexibility. "Streamlined Observability: 

Implementing Automated Data Management" documents that implementing a hierarchical data model with pre-aggregated 

rollups reduced average query times significantly for dashboard rendering while maintaining the ability to drill down into raw data 

when needed. The approach creates a pyramid of aggregation levels, with each level containing progressively more detailed but 

higher-cardinality data. A transportation logistics company featured in the research implemented a three-tier observability 

hierarchy—fleet-level aggregates for executives, vehicle-group metrics for regional managers, and individual vehicle telemetry for 

maintenance teams—resulting in appropriate visibility for each user category without overwhelming their systems with 

unnecessary detail. 

The research recommends designing hierarchical models around natural organizational and technical boundaries. The most 

effective implementations aligned their hierarchies with both technical architecture (service, component, instance) and business 

structure (organization, team, product). This alignment ensured that observability data naturally supported both technical 

troubleshooting and business decision-making through the same underlying architecture. A retail banking platform described in 

the study implemented a multi-level hierarchy that reduced their average dashboard loading time substantially while maintaining 

drill-down capabilities for incident response. The approach proved particularly valuable for hybrid environments spanning multiple 

infrastructure types, with unified aggregates providing consistent visibility despite heterogeneous underlying systems. 

Implementation Example: Metric Cardinality Control 

Consider a web service that initially instruments HTTP requests with labels that include path, method, status code, user ID, and 

client IP address. This approach would create a unique time series for each user ID and client IP combination—potentially millions 

of series. 

According to "OBSERVABILITY IN CLOUD-NATIVE ENVIRONMENTS: CHALLENGES AND SOLUTIONS," a production web service 

handling many thousands of requests per second with this instrumentation approach generated millions of time series within a 

day. The research documented storage requirements growing substantially, with query latency increasing dramatically compared 

to baseline measurements as cardinality continued to expand. Dashboard rendering operations that previously completed quickly 

began taking much longer, significantly impacting operational visibility during incident response. 

A cardinality-conscious approach would instead use only the essential dimensions like path, method, and status code. This reduces 

cardinality dramatically while still providing actionable service-level metrics. User-specific analysis could be handled through logs 

or traces instead. The same research demonstrated that this optimized approach reduced the time series count to a few thousand 

(a massive reduction) while maintaining all essential service-level visibility. Storage growth slowed significantly, and query 

performance remained consistent regardless of traffic volume, with dashboard operations completing quickly even during peak 

traffic periods. 

The study recommends a hybrid approach for organizations requiring some level of user-specific attribution without the full 

penalties of high-cardinality instrumentation. This "dual instrumentation pattern" separates metrics into different retention classes 

- one with high retention and low cardinality (using only essential service dimensions) and another with short retention and 

medium cardinality (adding user categorization but not individual identifiers). 
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Aspect Before After 

Label Structure Including user_id, client_ip Only path, method, status 

Time Series Millions Thousands 

Storage Growth GB/day MB/day 

Query Performance Degrades with traffic Consistent 

User Analytics Mixed with operations Moved to logs/traces 

Table 4: Implementation Example - Before/After Optimization [7]  

This pattern provided both long-term service-level visibility and short-term user-category analysis capabilities without the storage 

and performance penalties of full high-cardinality instrumentation. A subscription service provider implementing this approach 

reduced their storage growth significantly while maintaining sufficient visibility for both engineering and business analytics 

purposes. The research specifically recommends limiting the cardinality of the user-specific metrics through strategic 

aggregation—using broader categories like user types or geographies rather than individual identifiers—to provide meaningful 

segmentation without excessive granularity. 

Monitoring Cardinality Itself 

Establishing visibility into your cardinality is crucial for maintaining system health. "Practical Applications of Cloud Computing for 

Comprehensive Observability" found that organizations implementing proactive cardinality monitoring detected potential issues 

much earlier than those relying on symptomatic indicators like query slowdowns or storage alerts. The research emphasizes that 

cardinality monitoring should be considered a fundamental component of observability platform management rather than an 

optional addition. 

Track the number of unique time series per metric 

Monitoring the cardinality of individual metrics provides early warning of potential explosions. "OBSERVABILITY IN CLOUD-NATIVE 

ENVIRONMENTS: CHALLENGES AND SOLUTIONS" recommends implementing dedicated monitoring using built-in metrics 

exposed by most observability platforms. The research documents that organizations tracking cardinality growth detected most 

potential issues before they impacted system performance. This proactive approach enabled intervention before storage or query 

performance degraded to user-impacting levels. A cloud infrastructure provider featured in the study implemented anomaly 

detection on cardinality metrics that identified unusual growth patterns by comparing current trends against historical patterns, 

triggering alerts when metrics exhibited growth rates exceeding typical thresholds from their historical baselines. 

The study recommends monitoring both absolute cardinality values and growth rates to provide comprehensive visibility. Absolute 

thresholds serve as guardrails against known system limits, while growth rate monitoring identifies potentially problematic trends 

before they reach critical levels. The most effective implementations described in the research established different thresholds for 

different metric categories, with infrastructure metrics typically having stricter controls than application metrics due to their 

foundational importance. This categorized approach prevented false positives while maintaining appropriate sensitivity for critical 

systems. 

Monitor storage growth rates 

Tracking storage consumption provides an indirect measure of cardinality health. According to "Designing Tomorrow's 

Observability: A Software Architect's Guide," monitoring storage growth patterns can identify cardinality issues that might not be 

apparent through direct cardinality metrics alone. The research found that unexpected changes in storage efficiency—measured 

as bytes stored per time series—often indicated data model problems before they manifested as performance issues. Organizations 

implementing storage efficiency monitoring identified many cardinality-related issues through this approach, often detecting 

subtle problems that would have been missed by threshold-based cardinality alerts alone. 

The study recommends establishing baseline storage growth patterns during normal operations and alerting on deviations 

exceeding typical thresholds from these baselines. This approach proved particularly effective at detecting gradual cardinality drift 

that might otherwise go unnoticed until it reached critical levels. A technology platform described in the research implemented 

correlation analysis between storage growth and application deployment events, automatically flagging deployments that caused 

significant changes in storage efficiency. This integration between observability metrics and deployment systems created a 

feedback loop that helped development teams identify potentially problematic instrumentation changes during the deployment 

process rather than after they impacted production. 
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Set alerts for sudden cardinality increases 

Proactive detection of cardinality spikes can prevent cascading system failures. "Streamlined Observability: Implementing 

Automated Data Management" documents that alerts based on the rate of change of cardinality metrics detected most 

problematic instrumentation changes during their initial deployment rather than after they impacted production systems. The 

research found that optimal alert thresholds varied by environment but typically fell within moderate percentage increases over 

short time periods for stable production systems. These thresholds balanced sensitivity against false positives, providing reliable 

early warning without excessive alerting. 

The study highlights the importance of monitoring the ratio between high and low cardinality metrics as a particularly effective 

indicator. Organizations tracking this ratio detected cardinality issues earlier than those monitoring absolute values alone. The 

research attributes this improvement to the ratio metric's ability to distinguish between normal scaling (where all metrics grow 

proportionally) and cardinality problems (where high-cardinality metrics grow disproportionately). A financial services organization 

described in the study implemented composite alerting that combined both absolute thresholds and relative growth metrics, 

reducing false positives while maintaining detection sensitivity. 

Regularly review and prune unused dimensions 

Periodic auditing of metric dimensions can identify opportunities for optimization. "Practical Applications of Cloud Computing for 

Comprehensive Observability" found that organizations implementing regular cardinality reviews identified a significant portion 

of dimensions that could be removed without impacting operational visibility. These reviews typically discovered labels added for 

temporary debugging purposes that remained in production instrumentation indefinitely, creating unnecessary cardinality without 

providing ongoing value. The research recommends establishing a formal review process that evaluates the usage patterns and 

cardinality impact of each dimension against its operational value. 

The most effective auditing approaches described in the study used instrumentation usage analysis to correlate label presence in 

queries against cardinality contribution. This analysis identified high-cardinality dimensions with minimal query utilization, 

representing prime candidates for pruning or aggregation. A technology company featured in the research implemented a "label 

value ratio" metric that compared the number of unique values for each label to the number of queries utilizing that label for 

filtering or grouping. Labels with high value counts but low query utilization were flagged for review, resulting in the identification 

and removal of numerous unnecessary high-cardinality dimensions that had been contributing to storage and performance issues 

without providing actionable insights. 

Conclusion 

Effective cardinality management represents a critical capability for organizations implementing observability at scale. As 

distributed systems continue to grow in complexity, the challenges of maintaining comprehensive visibility without succumbing 

to performance and cost impacts become increasingly pronounced. The strategies outlined in this article—from thoughtful 

instrumentation design and strategic aggregation to intelligent partitioning and proactive monitoring—provide a framework for 

addressing these challenges effectively. Organizations that implement these best practices can maintain the essential visibility 

needed for both operational troubleshooting and business analytics while avoiding the pitfalls of unmanaged cardinality. The dual 

instrumentation pattern, tiered storage approaches, and hierarchical data models offer particularly valuable solutions for balancing 

detailed insights with sustainable resource utilization. Perhaps most importantly, the research emphasizes the need to treat 

cardinality management not as an afterthought but as a fundamental design consideration throughout the observability lifecycle. 

By incorporating cardinality awareness into instrumentation planning, retention policies, and monitoring practices, teams can build 

observability systems that scale gracefully alongside the services they monitor. As observability continues to evolve as a discipline, 

cardinality management will remain a key differentiator between systems that provide lasting value and those that collapse under 

their own weight. The organizations that master these techniques will be well-positioned to maintain visibility into increasingly 

complex distributed environments while keeping costs and performance within acceptable bounds. 
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