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| ABSTRACT 

The rapid growth of wind energy as a renewable power source has presented both opportunities and operational challenges due 

to its inherent intermittency and non-linearity. Accurate short-term forecasting of wind power output is vital for improving grid 

reliability, reducing operating costs, and enhancing energy market efficiency. This study presents a comprehensive comparative 

analysis of traditional time series models and modern machine learning algorithms for short-term wind power forecasting. Using 

high-frequency SCADA data from a commercial wind turbine in Turkey, we evaluate the predictive performance of nine models: 

Seasonal Naive, Exponential Smoothing (ETS), ARIMA, ARIMAX, Dynamic Harmonic Regression, Linear Regression, Gradient 

Boosted Trees (GBM), and Generalized Additive Models (GAM). Root Mean Square Error (RMSE) is employed as the primary 

accuracy metric on a hold-out test set. Among the models analyzed, the Gradient Boosted Tree model demonstrated superior 

performance with the lowest RMSE of 16.05, followed by ARIMAX (RMSE = 20.8), GAM (RMSE = 29.7), and linear regression 

using external meteorological inputs (RMSE = 29.9). Traditional statistical models such as ETS and ARIMA showed comparatively 

lower performance, particularly in handling non-linear patterns and multiple seasonalities. The study highlights the importance 

of integrating exogenous variables—such as wind speed, direction, and theoretical power curve—into forecasting frameworks to 

capture complex relationships and improve accuracy. Our findings emphasize that ensemble learning methods and hybrid 

statistical-ML approaches offer meaningful advancements in renewable energy forecasting. These insights provide valuable 

guidance for energy planners, system operators, and stakeholders seeking to optimize renewable integration and grid stability. 

Future work can explore deep learning architectures and spatiotemporal models across multi-turbine datasets for broader 

applicability. 
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1. Introduction 

The integration of renewable energy sources into power systems has become a cornerstone in achieving global sustainability 

goals, with wind energy emerging as one of the most promising and rapidly expanding technologies. According to the 

International Energy Agency (IEA, 2023), wind power accounted for over 15% of global renewable electricity generation in 2022 

and is projected to play a critical role in achieving net-zero targets. However, the intermittent and stochastic nature of wind 

presents significant challenges to grid reliability, power market stability, and energy storage planning (Zhang et al., 2014; Foley et 

al., 2012). 

Accurate short-term forecasting of wind power output is essential for mitigating these challenges. Grid operators rely on these 

forecasts to balance supply and demand, reduce operating reserves, and avoid penalties arising from imbalances in the 
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electricity market (Giebel et al., 2011). Forecasting also supports economic dispatch, maintenance scheduling, and renewable 

portfolio optimization (Soman et al., 2010). While traditional statistical models such as ARIMA and Exponential Smoothing have 

long been applied to this domain, they often fall short in capturing the non-linear relationships and high-frequency variations 

inherent in wind data (Zhou et al., 2011). 

Recent advances in machine learning (ML) have led to a paradigm shift in time series forecasting for renewable energy 

applications. Models such as Gradient Boosted Trees, Random Forests, and Deep Neural Networks have demonstrated superior 

performance in capturing complex, non-linear dependencies between meteorological variables and power output (Rashid et al., 

2020; Singh et al., 2021). In particular, ensemble methods and hybrid models combining time series and regression 

components—such as ARIMAX and dynamic harmonic regression—offer promising accuracy improvements over purely 

statistical or ML-based approaches (Wang et al., 2017). 

This study contributes to the growing literature by systematically comparing a range of forecasting and predictive modeling 

techniques using SCADA-derived data from a single wind turbine. We evaluate models including Seasonal Naive, ETS, ARIMA, 

ARIMAX, Linear Regression, Boosted Trees, Generalized Additive Models (GAM), and Dynamic Harmonic Regression. The 

comparison is based on Root Mean Square Error (RMSE) over a hold-out test set, offering practical insights into model suitability 

under multiple seasonalities and noisy data environments. Our findings underscore the value of ensemble learning approaches, 

particularly Boosted Trees, in delivering robust and accurate wind power predictions for real-world operational use. 

 

2. Literature Review 

Short-term wind power forecasting has received considerable attention in recent decades due to the growing integration of 

intermittent renewable energy sources into modern power systems. Accurate forecasting techniques enable grid operators and 

market participants to enhance operational efficiency, reduce balancing costs, and improve the economic dispatch of electricity 

(Zhang et al., 2014; Soman et al., 2010). 

 

Traditional approaches to wind power forecasting have often relied on statistical time series methods, such as the Autoregressive 

Integrated Moving Average (ARIMA) model, which are well-suited for stationary data but may fall short in capturing the non-

linear dynamics and multiple seasonalities observed in real-world wind data (Box et al., 2015; Hyndman & Athanasopoulos, 

2021). Exponential Smoothing State Space Models (ETS) have also been used to model level, trend, and seasonal components, 

though their performance may degrade in the presence of non-Gaussian noise or complex temporal dependencies (Hyndman et 

al., 2008). 

 

In an effort to improve forecasting accuracy, researchers have increasingly turned to machine learning (ML) techniques, which 

are capable of modeling non-linear and high-dimensional relationships without explicit assumptions about data distributions. 

For instance, Random Forest and Gradient Boosting Machines (GBMs) have shown strong predictive performance in wind 

power forecasting tasks by leveraging ensemble learning and residual fitting (Natekin & Knoll, 2013). Rashid et al. (2020) used 

Random Forests on SCADA data to predict the capacity factor and achieved mean absolute errors below 4% in certain 

configurations. 

 

More recently, hybrid and deep learning models have emerged as promising alternatives. Singh et al. (2021) compared 

Random Forest, Long Short-Term Memory (LSTM), and Extreme Gradient Boosting (XGBoost) models on wind farm SCADA 

datasets and found that ensemble models outperformed classical neural networks in forecasting accuracy. These models also 

benefit from their ability to integrate exogenous variables such as wind speed, direction, and theoretical power curves, making 

them well-suited for real-time applications (Wang et al., 2017). 

 

Additionally, Generalized Additive Models (GAM) have been applied in cases where smooth non-linear effects are 

hypothesized between predictors and response variables (Hastie & Tibshirani, 1990). These models offer an interpretable 

alternative to black-box ML methods while allowing flexible modeling of non-linearity through spline functions. 

 

The literature also highlights the growing role of regression models with ARIMA errors (ARIMAX), which combine the 

strengths of regression and time series modeling to incorporate external predictors and autocorrelated residuals. Studies such as 

those by Xie et al. (2014) and Gao et al. (2019) demonstrate how such hybrid models improve upon pure ARIMA or ML-based 

techniques, especially when handling seasonally adjusted datasets. 

 

Despite these advancements, a consensus remains elusive regarding the best forecasting method under all scenarios. Factors 

such as time resolution, geographical variability, turbine technology, and meteorological inputs greatly influence model 
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performance (Foley et al., 2012). This underscores the importance of comparative model studies using consistent datasets and 

evaluation metrics, which this paper seeks to address. 

 

3 Methodological Framework 

This study employs both classical statistical time series forecasting methods and modern machine learning techniques to 

compare predictive performance in short-term wind power output forecasting. The analysis is based on SCADA data from a wind 

turbine in Turkey, covering hourly measurements for the year 2018. The methodology consists of data preprocessing, model 

development, and performance evaluation based on Root Mean Square Error (RMSE). 

3.1 Data Source 

The dataset used in this study was collected from a Supervisory Control and Data Acquisition (SCADA) system linked to a 

single commercial wind turbine located in Turkey. SCADA systems are widely adopted in wind energy operations and provide 

high-frequency time series data on turbine performance and environmental conditions, including: 

• Wind Speed (in meters per second), 

• Wind Direction (in degrees), 

• Theoretical Power Curve Output (in kilowatts), and 

• Actual Power Output (in kilowatts). 

The dataset spans a full calendar year, from January 1, 2018, to December 31, 2018, with an original temporal resolution of 

10-minute intervals. After initial preprocessing, the data were aggregated to hourly intervals to better align with standard 

forecasting horizons and grid operation schedules. This aggregation also reduces short-term volatility and sensor noise inherent 

in high-frequency data (Soman et al., 2010). 

A total of 8,439 hourly observations were retained after filtering for completeness and quality. Missing values were not present; 

however, some observations were found to have negative or zero actual power output. These were retained after inspection, as 

they likely reflect real turbine idling or calm wind conditions. 

Due to data-sharing constraints, the dataset is not publicly available but was obtained through an academic-industry 

collaboration for research purposes. However, similar open-access datasets are available for benchmarking, such as: 

• NREL WIND Toolkit (National Renewable Energy Laboratory): 

https://www.nrel.gov/grid/wind-toolkit.html 

• GEFCom2012/GEFCom2014 Wind Forecasting Challenge Datasets: 

https://www.drhongtao.com/gefcom 

These public datasets may be used for validation or replication of similar studies. 

3.2 Data Preprocessing 

The original data was collected at 10-minute intervals and included four variables: wind speed (m/s), wind direction (degrees), 

theoretical power curve (kW), and actual power output (kW). To reduce noise and align with operational decision-making time 

frames, the data was aggregated to hourly intervals using summation for power output and averaging for other variables, 

yielding 8,439 hourly observations. 

To stabilize variance and approximate normality, we applied a Box-Cox transformation to the response variable: 

 

 

 

A λ value of approximately 0.386 was estimated using maximum likelihood (Box & Cox, 1964). The transformed series was then 

differenced if needed to achieve stationarity, assessed via Augmented Dickey-Fuller (ADF) tests and ACF/PACF plots. 
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3.3 Forecasting Methods 

3.3.1 Seasonal Naive and ETS 

The Seasonal Naive (SNAIVE) method assumes that the future value at a given time is equal to the value at the same time in 

the previous season. This serves as a simple benchmark model. 

The ETS model, defined in state-space form, considers error, trend, and seasonality components (Hyndman et al., 2008). The 

general form is: 

 

We selected between ETS(A,N,A), ETS(A,A,A), and Holt-Winters models using the AICc criterion. 

3.3.2 ARIMA and ARIMAX 

The ARIMA(p,d,q) (P,D,Q)[m] model captures autocorrelations and seasonality in stationary data (Box et al., 2015). The model 

can be expressed as: 

 

To incorporate exogenous variables, we used ARIMAX, extending ARIMA as: 

 

 

 

 

Where xi,t are the regressors: wind speed, theoretical power, and wind direction. 

3.3.3 Dynamic Harmonic Regression 

To capture long-period seasonalities, Dynamic Harmonic Regression (DHR) incorporates Fourier terms as exogenous 

regressors: 
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Here, KKK controls the number of harmonics, and mmm represents the seasonal period (e.g., 24 for daily, 168 for weekly). DHR 

effectively approximates multiple seasonalities (Taylor et al., 2017). 

3.4 Predictive Modeling Techniques 

3.4.1 Linear Regression 

Two Ordinary Least Squares (OLS) models were fitted: 

• Model A: Power output ~ time-based features (trend, seasonality) 

• Model B: Power output ~ wind speed, theoretical power, wind direction 

The standard OLS form: 

 

 

 

 

Model performance was evaluated via Adjusted R2 and RMSE. 

3.4.2 Gradient Boosted Trees (GBM) 

We implemented GBMs using the gbm package (Ridgeway, 2006). Boosting iteratively fits weak learners to the residuals of 

previous models: 

Fm(x)=Fm−1(x)+νhm(x) 

Where: 

• Fm is the boosted model at iteration mmm, 

• hm(x) is the base learner (typically a decision tree), 

• ν is the learning rate. 

 

Hyperparameters included: 

• n.trees = 5000 

• interaction.depth = 4 

• shrinkage = 0.01 

 

Feature importance was derived from relative influence measures. 

3.4.3 Generalized Additive Models (GAMs) 

GAMs model the response as a sum of smooth functions: 

 

Here, fi are spline-based smoothers (e.g., cubic regression splines). We used the mgcv package (Wood, 2017) with gam () and 

compared three GAM formulations with different degrees of smoothness. 

3.4 Model Evaluation 

All models were trained on data from January 1 – December 24, 2018, and tested on December 25–31, 2018. The Root Mean 

Square Error (RMSE) was used as the primary evaluation metric: 
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Models were ranked based on test set RMSE. 

 

3.5 Data Features  

3.5.1 Data 

Wind farms are typically linked to a Supervisory Control and Data Acquisition (SCADA) system, which constantly gathers data 

from individual wind turbines. The logged information encompasses crucial parameters like power production, wind direction, 

and wind speed [3]. Leveraging the predictive power of wind turbine forecasts allows wind farm management teams to make 

informed decisions pertaining to power production, consumption, and storage capacity management within smart grids. 

For the purpose of this thesis, we applied the data generated by a wind turbine in Turkey from January 1st, 2018, to December 

31st 2018. We aim to use this data to provide forecasts for six days by dividing the data into a training set, from January 1st, 

2018, to December 24st 2018 and a test set, December 25st 2018, to December 31st 2018.   

3.5.2 Data Transformation and Descriptive Statistics 

Our initial data is composed of four parts, the wind speed and wind direction that the turbine uses for electricity generation, the 

theoretical power given the wind speed for that moment, and the actual power generated by the turbine. The data is for 10 

minutes intervals, with no mission value but have aberrant values.  The data are quite clean and only need simple adjustments. 

Aggregating 10-minute data to hourly data for wind power forecasting is done primarily to reduce the effects of short-term 

variability and noise, thereby enhancing the stability and reliability of the forecasting model. This simplifies the data structure 

and aligns with typical operational and market decision-making periods, which are often based on hourly schedules. After 

aggregation, we have 8439 observations with 5 variables. The variables include Date, Power_kw (actual power generated by the 

turbine), Windspeed, Theoretical_Power_Curve (theoretical power given the wind speed), wind direction.  We have used this code 

to aggregate data: 

We have summed the actual power production, and for aggregating other columns we have used the mean function. As it is 

logical to have total hourly production, and for other means is feasible.  

We compute some descriptive statistics for actual power production/Power_kw. 

   Min.    1st Qu.    Median              Mean       3rd Qu.     .Max. 

-1.077  468.285   5061.27   0  7829.990 14638.404   21626.460 

 

Table 1: Some descriptive statistics for actual power production/Power_kw 

From the summary table we can see that the maximum power production is 21626.460kW and the minimum value is -1.077. 

When we investigate this further, we find that 1495 observations are zero, which is sensible because there are times that has no 

wind and no electricity production. Data appears to have a wide range, including negative and zero values, as well as a 

substantial variance. As data has many negative and zero values as well, we choose to use box-cox transformation instead of log 

transformation.  

We get a lambda value of 0.3858352, and we transform the data before dividing the data set into train and test. After that we 

tried to use some time plots to find out trends, and seasonality in the data. From the two time series plots, it is hard to identify 

any seasonality and trend, because there are a lot of close values.  So we have decided that we will examine autocorrelation 

coefficients with the ACF plot to see whether our data has trends and seasonality. 

 



Comparative Machine Learning and Time Series Forecasting of Wind Power Output Using SCADA Data 

Page | 20  

 

Figure 1: Time series plot to see hourly and daily seasonality 

 

 

Figure2: Customize time series plots to see daily and weekly seasonality 
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Figure 3: ACF plot of actual power production/Power_kw 

From the ACF plot, it is clear that wind power production has both daily and weekly seasonality with strong trend, as slow 

decrease in the ACF as the lags increase is due to the trend, while the “scalloped” shape is due to the seasonality 

4 Data Analysis and Modelling with Forecasting Methods 

4.1 Seasonal NAIVE 

As our dataset has both seasonality and trend, we have used the seasonal naive method as a benchmark forecasting method. 

The SNAIVE method is a simple forecasting approach, which assumes that the seasonal patterns will repeat exactly as in the past. 

 

Table 2: Accuracy Metrics of Seasonal Naive (SNAIVE) Model on Test Set 

 

The RMSE (Root Mean Square Error) value for the test set, calculated using the accuracy() function, is 99.4. This value indicates 

the standard deviation of the residuals (prediction errors). Residuals are a measure of how far from the regression line data 

points are, so a lower RMSE is generally preferable as it would indicate that the errors made by the prediction are smaller. Thus, a 

lower RMSE value is generally indicative of a better fit to the data. We are going to use RMSE as our accuracy to compare 

different machine learning models. It's worth noting that some of the metrics are infinite or NaN in our results (MPE, MAPE, 

MASE, RMSSE). This could be due to division by zero, which typically indicates that there are zero values in our test dataset, and 

these metrics are calculated using divisions. 

 

4.2 Exponential Smoothing (ETS) 

When we use ETS method, we can choose from several types of ETS model such as additive model, multiplicative, Holt-Winters 

method, which uses multiplicative errors, an additive damped trend, and multiplicative seasonality, and function ETS() that 

automatically select the best model. We have used all of them as our data has multiple seasonalities and unsure about whether 

trends are constant. 

 

 

 

 

 

 

 

 

 

 

Table 3: Comparison of ETS Model Variants Using AIC 
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We have trained four different models (three ETS variants and one auto ETS model) on your training data and compared their 

AIC (Akaike Information Criterion) values. The AIC is a measure used to compare models. The lower the AIC, the better the model 

is considered to be, as a lower AIC suggests a model that has a better fit with a smaller number of parameters. The output 

suggests that the hw model, which is the Holt-Winters method with multiplicative errors, an additive damped trend, and 

multiplicative seasonality, is the best among the four models, with the lowest AIC of 123283. The second-best model according 

to the AIC is the ets_auto model, which is the automatic ETS model that selects the best model based on the AICc score. The 

additive and multiplicative models come in third and fourth place, respectively, according to their AIC scores.  

 

 

 

 

 

 

 

 

 

 

Table 4: Forecast Accuracy of ETS Models on Test Set Using RMSE 

 

However, if you look at RMSE, it appears that the ets_auto model is doing better than any other models. According to AICc, how 

model was doing better. We are going to keep ats_auto model here as the best model, because it is doing better in an unknown 

data set. Otherwise, we can overfit our forecasting. It is also worth noting that in terms of the accuracy measurement in unknown 

dataset SNAIVE method is doing better than ets_auto model with RMSE of 99.4 (SNAIVE). As we said before that sometimes 

some simple models work better than other models, this is the proof. Apart from that this dataset has multiple seasonalities, and 

the ETS model is not good at handling multiple seasonality with long seasonal periods.  

 

 

 

 

 

 

 

 

 

 

Table 5: Parameter Estimates and Structure of Selected ETS(A,Ad,A) Model 

 

If we look at the report of the automatically generated ETS model, we can see the type of ETS model used. ETS(A,Ad,A) 

represents an ETS model with additive error, additive damped trend, and additive seasonality.These are the estimated 

parameters of the model, alpha (for level), beta (for trend), gamma (for seasonality), and phi (for dampening). These parameters 

determine how fast the model responds to changes in the level, trend, and seasonal pattern of the series. 

 

4.3 ARIMA Model 

Prior to fitting an ARIMA model, it is essential to ensure that the time series data is appropriately transformed and rendered 

stationary. In our case, the original series exhibited both a trend and seasonality, indicating non-stationarity. 

 

To assess the degree of differencing required, we applied unit root tests. Specifically, the KPSS (Kwiatkowski–Phillips–Schmidt–

Shin) test indicated a test statistic of 1.03 with a p-value of 0.01. This result suggests the presence of a unit root, thereby 

rejecting the null hypothesis of stationarity. Further evaluation using the ndiffs() function indicated that a first-order differencing 

was necessary to achieve stationarity in the trend component. 

 

Given the seasonal pattern in the data, seasonal differencing was also considered. The need for both non-seasonal and seasonal 

differencing aligns with the visual evidence of trend and periodicity in the series. 

 

Subsequently, we applied the required differencing to the data. We also utilized autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots—generated using gg_tsdisplay—to facilitate identification of appropriate ARIMA model 
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parameters. These diagnostics are crucial in determining the autoregressive (AR), moving average (MA), and seasonal 

components of the model. 

 

In the above code, we have also used the gg_tsdisplay function to plot both ACF and PACF plots. Those are useful in estimating 

parameters in seasonal and non-seasonal ARIMA models.    

 

Figure 4: ACF and PACF plots 

 

 

If we look at ACF and PACF, especially in PACF plots, we can see that there are many significant spikes in lag. Therefore, it is a bit 

inconvenient  to choose p or d randomly. Instead of choosing those randomly, we have used the ARIMA function, an automated 

algorithm.   

 

 

 

 

 

 

 

 

 

 

Table 6: ARIMA Model Configuration and Forecast Accuracy 

 

To make it work better, we choose to do stepwise = False. The fitted model is an ARIMA(0,1,4)(2,0,0)[24] model. This suggests 

that the time series data was differenced once to achieve stationarity (indicated by the '1' in the order of differencing in the non-

seasonal part), and it uses 4 lagged error terms (moving average terms) in the non-seasonal part of the model (indicated by the 

'4'). For the seasonal part, the model uses 2 autoregressive terms (indicated by the '2'). The number '24' within brackets indicates 
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that the seasonal period of the series is 24. We can see from forecasting and RMSE that ARIMA model is not doing better than 

SANIVE or ETS model.  

 
Figure 5: ARIMA Forecast Plot with 80% and 95% Confidence Intervals for Power Output 

 
Table 7: Forecast Accuracy Metrics of Auto ARIMA Model on Test Set 

 

4.4  Regression with ARIMA errors (ARIMAX) 

As we can see, so far, the seasonal naive method is doing better than other models. We have decided to use Regression with 

ARIMA errors, as with this model we can use external factors and our dataset has three predictors namely Wind Speed, 

Theoretical Power Curve, and Wind Direction. Before running the algorithm, we want to see the relationships of these variables 

with Power production. 
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Figure 6: Scatter Plot Relationships Between Predictors and Power Output 

 

From the graph we can see that wind speed and the theoretical power curve have a positive relationship with power output. 

Graphically wind direction does not have a strong correlation with power production, but we will keep it. Wind direction, despite 

lacking a clear graphical correlation, could still influence power output in complex or non-linear ways that may be captured in a 

comprehensive statistical model. 

 

The model used here is an ARIMA(0,1,2) for the residuals of the regression model. This means that no autoregressive terms were 

used (0), the series was different once to make it stationary (1), and it has two moving average terms (2). The negative values for 

the moving average coefficients indicate that errors in prediction are likely to reverse sign in future periods. 

 

The fact that wind direction has a negative coefficient suggests that an increase in wind direction (presumably measured in 

degrees from North) will decrease the power output slightly, holding everything else constant, even though this relationship was 

not initially obvious in the graphical analysis. This underlines the complexity of the relationship between wind direction and 

power output. From the accuracy measurement, we can see that the ARIMAX model has improved accuracy significantly with a 

test of  RMSE of 20.8. 

 

4.5 Dynamic harmonic regression 

Dynamic regression with Fourrier terms can handle data that has very long seasonality. Our dataset has both daily and weekly 

seasonality, which are pretty long to handle by time series forecasting models such as ETS or ARIMA. So we have run Dynamic 

regression with both daily and weekly seasonality. While running code for this model, we wanted to select the best K for daily 

and weekly seasonality based on RSME, but it was running hours and hours. We tried to apply the code in a small sample of our 

data set with parallel computing. 

Therefore, we have decided to run one simple model, one model that is moderately complex, and a complex model. Three 

models that we run are: 
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Table 8: Forecast Accuracy of Dynamic Harmonic Regression Models with Varying Fourier Terms (K) 

 

When we have given a look at the RMSE test, it appears that a simple model is almost as good as the most complex model. 

 

5 Data Analysis and Modelling with Predictive Methods 

5.1 Linear Regression  

Although linear regression is one of the simplest machine learning tools, it is one of the powerful tools to use. As a predictive 

model, we have used it. We have run two regression models. In the first model, we have used trend, and seasonality as predictors 

and, in the second model, we have used wind speed, theoretical power curve, and wind direction.  

 

Table 9: Coefficient Estimates from Linear Regression Model with Trend and Daily Seasonality 

If we give a look at the result, we can see that all model coefficients were found to be highly significant (p < 0.001). The model, 

however, explained only a modest portion of the variability in the data, with an adjusted R-squared of 0.09471. Despite the 

significant coefficients, further refinement might be needed to improve the model's explanatory power. Now we will see how this 

model is doing in terms of test accuracy.  It appears that linear regression with trend and seasonality has improved the RMSE 

(56.5) a lot.  Linear regression with external predictors has even improved the predictors further with the test RMSE of 29.9.  

5.2 Boosted Trees 

The gbm function from the gbm library in R was used to fit this model.m. The distribution of the target variable, 'Power_kw', was 

assumed to be Gaussian. A total of 5000 decision trees were grown, with a maximum depth of 4 levels in each tree. This was 

achieved by setting n.trees = 5000 and interaction.depth = 4. 

The `summary` function for a gbm model provides a measure of the relative influence (rel.inf) of each predictor variable, which is 

an indication of how important that variable is for the model's predictions. 

In our case: 

`Theoretical_Power_Curve` is the most important predictor with a relative influence of 50.63%, indicating that this variable 

contributes the most to the model's predictive capability.  `Wind_speed` is the second most influential predictor, contributing 

36.97% to the prediction.  `wind_direction` has the least relative influence among the three variables with 12.40%. 

It's worth noting that these percentages are normalized to sum to 100% across all the predictors, and a higher percentage 

indicates a stronger relationship with the response variable in the context of the model.  
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This suggests that, according to the model, the amount of power produced by the turbine is most strongly associated with the 

Theoretical Power Curve, followed by the Wind Speed, and then the Wind Direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Variable Importance from Boosted Trees Model Predicting Power Output 

From the partial dependence plot, we can see the same effect. 

 

Figure 8: In terms of test RMSE, this model is doing far better than any model so far we have used with test RMSE of 16.051. 
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5.3 Generalized Additive Models (GAM) 

We have fitted and compared three Generalized Additive Models(GAM). gam_fit1 uses smooth functions of all predictor 

variables with automatic selection of the degrees of freedom for each smooth term. gam_fit2 also applies smooth functions but 

sets specific degrees of freedom for each predictor. gam_fit3 applies a linear function to 'Wind_speed' and 'wind_direction' while 

keeping 'Theoretical_Power_Curve' as a smooth function. The Analysis of Deviance table produced by the anova() function 

compares these models. 

From the  ANOVA results, the Model 3 shows a highly significant improvement over both Model 1 and Model 2 (p-value < 2.2e-

16), indicating that this model fits the data significantly better. However, the negative degrees of freedom and larger residual 

deviance in Model 3 suggest complexity and potentially overfitting. Given this, while the ANOVA suggests Model 3 as the best fit 

statistically, we should consider potential overfitting and interpret the model with caution. It's also important to remember that 

the "best" model is not only about statistical significance but also depends on the context. 

For visualizing the estimated smooth functions for each predictor in the gam_fit1 model we have used plot.Gam() from the mgcv 

package. These plots help us to understand the shape of the relationship between each predictor and the response. The 

se=TRUE option means that the standard error bands will be included in the plots. 

Figure 9: Estimated Smooth Functions from GAM Model (gam_fit1) for Wind Speed, Wind Direction, and Theoretical Power Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now if we focus on test RMSE, it appears that model one is better than third model with test RMSE of 29.66 and 30.00 

respectively. As we have already mentioned, choosing model 3 based on the training dataset may produce a result of overfitting.  

6. Comparing Test RMSE 

 

Models RMSE 

Boosted Tree 16.05 

Regression with ARIMA errors (ARIMAX) 20.8 
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Generalized Additive Models (GAM) 29.7 

Linear regression with external factors 29.9 

Linear regression with trend, and seasonality 56.5 

SNAIVE 99 

ETS (automatically generated)  102 

Dynamic harmonic regression (best model) 104.27 

ARIMA 152 

Table 10: Model Accuracy (RMSE) 

In our study, we compared the predictive performance of eight different models by using the Root Mean Square Error (RMSE) as 

a measure of model accuracy. According to our results, the Boosted Tree model provided the most accurate forecasts with the 

lowest RMSE of 16.05, followed closely by the ARIMAX model with an RMSE of 20.8. The Generalized Additive Models (GAM) and 

the Linear regression with external factors showed comparable performance, with RMSE values of 29.7 and 29.9, respectively. The 

Linear regression with trend and seasonality model demonstrated a moderate predictive accuracy with an RMSE of 56.5. On the 

other hand, SNAIVE, ETS (automatically generated), Dynamic harmonic regression, and ARIMA models showed significantly less 

accuracy in their predictions, with RMSE values of 99, 102, 104.27, and 152, respectively. These results suggest that machine 

learning techniques such as Boosted Trees and time series models like ARIMAX can provide more precise forecasts in our case 

study compared to other considered models. 

7. Conclusion 

This study evaluated a range of statistical and machine learning models for short-term wind power forecasting using SCADA 

data from a commercial wind turbine. Among the nine models assessed, the Boosted Tree model outperformed all others with 

the lowest RMSE of 16.05, followed by the ARIMAX model with an RMSE of 20.8. Generalized Additive Models and linear 

regression using meteorological inputs also yielded reasonably strong predictive performance. 

Our results underscore the importance of incorporating exogenous variables such as wind speed, wind direction, and theoretical 

power curves to improve forecast accuracy. Moreover, the superior performance of ensemble learning techniques—particularly 

Gradient Boosted Trees—demonstrates the value of machine learning approaches in handling non-linear, high-frequency 

renewable energy data. 

From a practical standpoint, the findings support the use of ML-enhanced forecasting systems in operational grid environments 

to improve scheduling, load balancing, and integration of intermittent renewable resources. The comparison also reveals that 

while simpler models like SNAIVE or ETS offer interpretability, they are significantly less effective in capturing the complexities of 

wind power generation. 

Future research may explore hybrid deep learning frameworks, real-time adaptive modeling, or spatiotemporal forecasting by 

incorporating wind farm networks and meteorological forecasts. Additionally, extending the model evaluation to larger datasets 

and multi-turbine scenarios could enhance generalizability and operational relevance. 
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