Article contents
AI-Based Energy Forecasting for Smart Grids with Renewable Integration
Abstract
The growing integration of variable renewable energy sources (VRES), particularly wind and solar, into power systems is essential for advancing global decarbonization and energy sustainability goals. However, their inherent variability and weather dependence introduce significant challenges in maintaining power grid reliability, optimizing operations, and ensuring efficient market participation. Accurate forecasting of renewable generation and energy demand remains a critical problem. Traditional statistical and shallow machine learning approaches often struggle to model the complex spatio-temporal dynamics of VRES, leading to suboptimal performance under non-stationary and high-variability conditions. To address this, we propose a novel deep learning-based energy forecasting framework tailored for smart grids with high renewable penetration. Our solution integrates Long Short-Term Memory (LSTM) networks for capturing nonlinear temporal patterns, Convolutional Neural Networks (CNN) for extracting spatial dependencies, and attention mechanisms to enhance temporal feature prioritization across forecasting horizons. The model is implemented with exogenous inputs including temperature, wind speed, solar irradiance, land use, elevation, and geographic location. A real-time data assimilation layer using Kalman Filtering enables dynamic recalibration, improving model adaptability to changing weather and seasonal trends. Probabilistic forecasting is incorporated using Bayesian LSTM and quantile regression for uncertainty quantification. Evaluation on multiple real-world datasets from the National Renewable Energy Laboratory (NREL) and NOAA reveals that our approach achieves a 28.7% reduction in Mean Absolute Error (MAE) and a 31.4% improvement in Root Mean Square Error (RMSE) compared to traditional statistical models (ARIMA, SARIMA), and a 19.5% improvement over Support Vector Machines and Random Forests. Furthermore, the model shows a 24% enhancement in Continuous Ranked Probability Score (CRPS) for probabilistic accuracy.
Article information
Journal
Journal of Computer Science and Technology Studies
Volume (Issue)
7 (4)
Pages
461-480
Published
How to Cite
References
[1] S. Forhad et al., "DeepSegRecycle: Deep Learning and ImageProcessing for Automated Waste Segregation and Recycling," 2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Gazipur, Bangladesh, 2024, pp. 1-6, doi: 10.1109/ICAEEE62219.2024.10561709.
[2] S. Saif, M. J. Islam, M. Z. B. Jahangir, P. Biswas, A. Rashid, M. A. A. Nasim, and K. D. Gupta, "A Comprehensive Review on Understanding the Decentralized and Collaborative Approach in Machine Learning," arXiv preprint, arXiv:2503.09833, Mar. 2025, doi: 10.48550/arXiv.2503.09833.
[3] Biswas, P., Rashid, A., Habib, A. K. M. A., Mahmud, M., Motakabber, S. M. A., Hossain, S., Rokonuzzaman, M., Molla, A. H., Harun, Z., Khan, M. M. H., Cheng, W.-H., & Lei, T. M. T. (2025). Vehicle to Grid: Technology, Charging Station, Power Transmission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations. World Electric Vehicle Journal, 16(3), 142. https://doi.org/10.3390/wevj16030142.
[4] S. Forhad et al., "DeepSegRecycle: Deep Learning and ImageProcessing for Automated Waste Segregation and Recycling," 2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Gazipur, Bangladesh, 2024, pp. 1-6, https://doi.org/10.1109/ICAEEE62219.2024.10561709
[5] S. H. Eshan et al., "Design and Analysis of a 6G Terahertz Aeronautical Antenna Based on Graphene," 2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Gazipur, Bangladesh, 2024, pp. 1-6, https://doi.org/10.1109/ICAEEE62219.2024.10561643
[6] S. H. Eshan et al., "X band On-body Antenna Design for Lung Cancer Detection using Single-Walled Carbon Nanotubes," 2023 8th International Conference on Robotics and Automation Engineering (ICRAE), Singapore, Singapore, 2023, pp. 182-186, https://doi.org/10.1109/ICRAE59816.2023.10458599
[7] T. Mim, Z. Mosarat, M. S. Taluckder, A. A. Masum, A. B. Shoumi, M. R. K. Shuvo, S. Forhad, and M. K. Morol, "Myocardial Infarction Prediction: A Comparative Analysis of Supervised Machine Learning Algorithms for Early Detection and Risk Stratification," in Proc. 2nd Int. Conf. Next-Gen. Comput., IoT Mach. Learn. (NCIM-2025), Signal, Image and Computer Vision Track, Paper ID 497, Feb. 2025.
[8] Tanzir Ahamed, Fozlur Rayhan, Imteaz Rahaman, Md Hamidur Rahman, Md Mehedi Hasan Bappy, Tanvir Ahammed, Sampad Ghosh, Optimization of buffer layers for CZTSSe solar cells through advanced numerical modelling, Journal of Physics and Chemistry of Solids,Volume 204, 2025, 112744, ISSN 0022-3697, https://doi.org/10.1016/j.jpcs.2025.112744. (https://www.sciencedirect.com/science/article/pii/S0022369725001969)
[9] Yuan, Z., Zhang, X., & Xu, J., "A Convolutional Neural Network Approach for Renewable Energy Forecasting," Renewable and Sustainable Energy Reviews, vol. 131, pp. 1093-1102, Aug. 2020. DOI: 10.1016/j.rser.2020.109659.
[10] F. Rayhan et al., "A Bi-directional Temporal Sequence Approach for Condition Monitoring of Broken Rotor Bar in Three-Phase Induction Motors," 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), Chittagong, Bangladesh, 2023, pp. 1-6, doi: 10.1109/ECCE57851.2023.10101518.
[11] Zhang, Y., Lu, X., & Liu, X., "Forecasting wind energy generation using ARIMA and SARIMA models," Energy, vol. 53, pp. 268-277, Aug. 2013. DOI: 10.1016/j.energy.2013.02.019.
[12] Khosravi, A., et al., "Wind speed prediction using support vector machine: A comparison study," Energy Conversion and Management, vol. 65, pp. 220-231, Mar. 2013. DOI: 10.1016/j.enconman.2012.09.023.
[13] J. K. Saha, A. B. Shakib, S. Tanveer, F. Rayhan, and N. A. Chisty, "Design and Implementation of a Smart Surveillance and Automation System for Patients," Int. J. Power Electron. Controllers Converters, vol. 9, no. 2, pp. 1–10, 2024. [Online]. Available: https://ecc.journalspub.info/index.php?journal=JPECC&page=article&op=view&path%5B%5D=1374
[14] Zhao, H., et al., "Wind power forecasting based on long short-term memory neural network," Renewable Energy, vol. 74, pp. 227-234, Mar. 2015. DOI: 10.1016/j.renene.2014.08.008.
[15] Sazib, A. M. ., Arefin, J. ., Farabi, S. A. ., Rayhan, F. ., Karim, M. A. ., & Akhter, S. (2025). Advancing Renewable Energy Systems through Explainable Artificial Intelligence: A Comprehensive Review and Interdisciplinary Framework. Journal of Computer Science and Technology Studies, 7(2), 56-70. https://doi.org/10.32996/jcsts.2025.7.2.5
[16] A. I. Sumaya, S. Forhad, M. A. Rafi, H. Rahman, M. H. Bhuyan and Q. Tareq, "Comparative Analysis of AlexNet, GoogLeNet, VGG19, ResNet50, and ResNet101 for Improved Plant Disease Detection Through Convolutional Neural Networks," 2024 2nd International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings), Mt Pleasant, MI, USA, 2024, pp. 1-6, https://doi.org/10.1109/AIBThings63359.2024.10863407
[17] Tasnim, J. et al. (2025). Mobile Applications in Electronic-Healthcare: A Case Study for Bangladesh. In: Namasudra, S., Kar, N., Patra, S.K., Taniar, D. (eds) Data Science and Network Engineering. ICDSNE 2024. Lecture Notes in Networks and Systems, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-97-8336-6_26
[18] A. Rashid, P. Biswas, A. A. Masum, M. A. A. Nasim, and K. D. Gupta, "Power Plays: Unleashing Machine Learning Magic in Smart Grids," arXiv preprint, arXiv:2410.15423, Oct. 2024, doi: 10.48550/arXiv.2410.15423
[19] S. Saif, M. A. A. Nasim, P. Biswas, A. Rashid, M. M. A. Haque, and M. Z. B. Jahangir, "Principles and Components of Federated Learning Architectures," arXiv preprint, arXiv:2502.05273, Feb. 2025, doi: 10.48550/arXiv.2502.05273.
[20] M. A. A. Nasim, P. Biswas, A. Rashid, K. D. Gupta, R. George, S. Chakraborty, and K. Shujaee, "Securing the Diagnosis of Medical Imaging: An In-depth Analysis of AI-Resistant Attacks," arXiv preprint, arXiv:2408.00348, Oct. 2024, doi: 10.48550/arXiv.2408.00348.
[21] Xu, Z., et al., "Improving wind power forecasting accuracy using Kalman filter-based deep learning models," IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 585-594, Apr. 2019. DOI: 10.1109/TSTE.2018.2849254.
[22] Chen, M., et al., "Bayesian deep learning for uncertainty quantification in renewable energy forecasting," IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 3773-3782, Sep. 2020. DOI: 10.1109/TSG.2020.2975437.
[23] M. A. Iqbal, T. Riyad, M. S. S. Oyon, M. S. Alam, S. Forhad and A. Shufian, "Modeling and Analysis of Small-Scale Solar PV and Li-ion Battery-based Smartgrid System," 2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Gazipur, Bangladesh, 2024, pp. 1-6, https://doi.org/10.1109/ICAEEE62219.2024.10561824
[24] Forhad, S., Hossen, M. S., Noman, S., Diba, I. A., Mahmud, F., Ullah, M. O., Hossain, S., & Shuvo, M. R. K. (2024). Influence of a Dual Axis IoT- Based Off-Grid Solar Tracking System and Wheatstone Bridge on Efficient Energy Harvesting and Management. Journal of Engineering Research and Reports, 26(3), 125–136. https://doi.org/10.9734/jerr/2024/v26i31099
[25] P. Biswas et al., "An Extensive and Methodical Review of Smart Grids for Sustainable Energy Management-Addressing Challenges with AI, Renewable Energy Integration and Leading-edge Technologies," in IEEE Access, doi: 10.1109/ACCESS.2025.3537651, https://doi.org/10.1109/ACCESS.2025.3537651
[26] Ahmad, S. et al. (2024). Simulated Design of an Autonomous Multi-terrain Modular Agri-bot. In: Udgata, S.K., Sethi, S., Gao, XZ. (eds) Intelligent Systems. ICMIB 2023. Lecture Notes in Networks and Systems, vol 728. Springer, Singapore. https://doi.org/10.1007/978-981-99-3932-9_30
[27] P. Chowdhury, S. Forhad, M. F. Rahman, I. J. Tasmia, M. Hasan and N. -U. -R. Chowdhury, "Feasibility Assessment of an Off-grid Hybrid Energy System for a Char Area in Bangladesh," 2024 IEEE International Conference on Power, Electrical, Electronics and Industrial Applications (PEEIACON), Rajshahi, Bangladesh, 2024, pp. 1-5, https://doi.org/10.1109/PEEIACON63629.2024.10800194M. A. A. Nasim, P. Biswas, A. Rashid, A. Biswas, and K. D. Gupta, "Trustworthy XAI and Application," arXiv preprint, arXiv:2410.17139, Oct. 2024, doi: 10.48550/arXiv.2410.17139.
[28] Unsal, D.B.; Aksoz, A.; Oyucu, S.; Guerrero, J.M.; Guler, M. A Comparative Study of AI Methods on Renewable Energy Prediction for Smart Grids: Case of Turkey. Sustainability 2024, 16, 2894. https://doi.org/10.3390/su16072894
[29] X. Wen, Q. Shen, W. Zheng, and H. Zhang, "AI-Driven Solar Energy Generation and Smart Grid Integration: A Holistic Approach to Enhancing Renewable Energy Efficiency," Academia Nexus Journal, vol. 3, no. 2, Aug. 2024. [Online]. Available: https://academianexusjournal.com
[30] Pierre Bouquet, Ilya Jackson, Mostafa Nick & Amin Kaboli (2024) AI-based forecasting for optimised solar energy management and smart grid efficiency, International Journal of Production Research, 62:13, 4623-4644, https://doi.org/10.1080/00207543.2023.2269565
[31] R. K. Patel, A. Kumari, S. Tanwar, W.-C. Hong, and R. Sharma, "AI-Empowered Recommender System for Renewable Energy Harvesting in Smart Grid System," IEEE Access, vol. 10, Mar. 2022, doi: 10.1109/ACCESS.2022.3152528.
[32] A. Kumar, M. Alaraj, M. Rizwan, and U. Nangia, "Novel AI-Based Energy Management System for Smart Grid With RES Integration," IEEE Access, vol. 9, pp. xx-xx, Dec. 2021, doi: 10.1109/ACCESS.2021.3131502.
[33] K. Ukoba, K. O. Olatunji, E. Adeoye, T.-C. Jen, and D. M. Madyira, "Optimizing renewable energy systems through artificial intelligence: Review and future prospects," Energy & Environment, vol. 35, no. 7, pp. 3833–3879, 2024, doi: 10.1177/0958305X241256293.
[34] N. D. Noviati, S. D. Maulina, and S. Smith, "Smart Grids: Integrating AI for Efficient Renewable Energy Utilization," International Transactions on Artificial Intelligence (ITALIC), vol. 3, no. 1, pp. 1–10, Nov. 2024, doi: 10.33050/italic.v3i1.644.
[35] Forhad, S., Zakaria Tayef, K., Hasan, M., Shahebul Hasan, A.N.M., Zahurul Islam, M., Riazat Kabir Shuvo, M. (2023). An Autonomous Agricultural Robot for Plant Disease Detection. In: Hossain, M.S., Majumder, S.P., Siddique, N., Hossain, M.S. (eds) The Fourth Industrial Revolution and Beyond. Lecture Notes in Electrical Engineering, vol 980. Springer, Singapore. https://doi.org/10.1007/978-981-19-8032-9_50
[36] P. Biswas, A. Rashid, A. Biswas, et al., "AI-driven approaches for optimizing power consumption: a comprehensive survey," Discover Artificial Intelligence, vol. 4, no. 116, 2024, doi: 10.1007/s44163-024-00211-7.
[37] S. Forhad, M. S. Hossen, I. A. Ahsan, S. Saifee, K. N. I. Nabeen and M. R. K. Shuvo, "An Intelligent Versatile Robot with Weather Monitoring System for Precision Agriculture," 2023 6th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 2023, pp. 1-7, https://doi.org/10.1109/ISCON57294.2023.10112101
[38] A. Rashid, P. Biswas, A. Biswas, M. A. A. Nasim, K. D. Gupta, and R. George, "Present and Future of AI in Renewable Energy Domain: A Comprehensive Survey," arXiv preprint, arXiv:2406.16965, Jun. 2024, doi: 10.48550/arXiv.2406.16965.