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| ABSTRACT 

This study examines stock price forecasting for FTSE 100 companies using deep learning and XAIl. The research addresses the 

disconnect between predictive accuracy and interpret ability in financial models by integrating data-driven forecasting with 

transparent feature attribution. Four neural architectures: LSTM2, Bi-LSTM3, GRU4 and CNN5 are compared to classical 

benchmarks: SMA6 and EMA7. Models are trained on OHLCV8 data augmented with technical indicators. Evaluation uses a 

threshold-based trading strategy. The findings indicate that a lower prediction error does not necessarily result in higher 

profitability. Although LSTM achieved the lowest prediction error, GRU and Bi-LSTM produced more stable cumulative returns 

(16%), compared to the EMA benchmark (2%). SHAP9 analysis demonstrates that recent price movements and momentum 

indicators, particularly SMA, drive model decisions. 
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1 – Introduction1 

The central challenge in stock price forecasting lies not only in increasing predictive accuracy but also in turning such gains into 

profitable, actionable investment decisions. Traditional methods, such as statistical time-series forecasting and financial ratio 

analysis, often rely on linear assumptions which limits their applicability. Machine and deep learning approaches have improved 

pattern recognition in market data. However, a critical disconnect remains: research often celebrates lower error rates without 

proving impact on trading performance or model explainability. This paper tackles this gap by integrating feature engineering, 

XAI, and simulated trading evaluation, we demonstrate how linking predictive outcomes to financial impact and transparent 

model behavior advances both theoretical and practical finance. 

 
1 Explainable artificial intelligence 2LSTM: Long Short-Term Memory 
3Bidirectional LSTM 
4Gated Recurrent Unit 
5Convolutional Neural Network 
6Simple Moving Average 
7Exponential Moving Average 
80pen; high; Low; Close; Volume 

9SHapley Additive exPlanations 
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Feature engineering adds new features, such as EMA, SMA, VIX, and Bollinger Bands, to help models spot market 

trends and volatility [Mos25]. Combining these features aims to give algorithms better market insight. The input 

data are used to train deep learning models (LSTM, Bi-LSTM, GRU, CNN) and for comparison against classical 

statistical measures (EMA and SMA) to support interpretation. Model performance is evaluated by MSElO and a 

simulation approach that applies a threshold to assess profitability. XAI strategies, such as SHAP, are utilized to 

interpret the influence of specific features and input dimensions on predictions. The remainder of this paper is 

organized as follows. 2 reviews related work on stock prediction and explainable finance. 3 presents the methodology 

and model design. 4 describes the experimental setup and the results. Section 5 discusses the findings, implications, 

wraps up the paper, and outlines future research directions. 

 

2. Related Work2 

Early attempts at stock market prediction relied on classical statistical techniques such as ARIMA and GARCH [BJ76] 

[BJR15] [Bol86]. Although successful for linear series, they could not properly characterize the non-linear behavior 

and volatility of financial markets [Fam70] [Tsa10]. To address this challenge, Deep learning and MLll techniques have been 

developed in stock data models as sequence data to take ad-vantage of temporal relationships to learn momentum, 

volatility, and market trends [FK18] [NPdO17]. Recurrent Neural Network architectures based on LSTM and GRU layers have 

also gained acceptance for financial projection because they can learn from temporal relationships in sequence data 

[NPdO17] [FK18] [ZW21]. Hybrid models have also demonstrated successful applications. For example, [MK25] reported that 

CNN-LSTM learning improved the predictability of returns relative to the benchmarks. [RJ25] de-signed an LSTM and real-

time sentiment analysis coupled with SHAP to generate interpretable buy or sell recommendations. Similarly, [KK19] and 

[Lan25] emphasized the effectiveness of CNN-LSTM learning to identify patterns by focusing on local features and 

dependencies to improve performance. Moreover, A Few researchers have tried to go beyond error measures for 

validating their models. For example, [LKY+24] ranked portfolios to generate +31% annual excess returns using LSTM 

on CSI 300 benchmarks. Additionally, all ML models rely on the input features provided to them and giving more 

high quality data could help with its accuracy and wise versa, as widely established by the garbage-in-garbage-out 

principle [ZW21]. Based on this rationale, [Mos25] examined 88 technical features, including EMA and HMAl2, RSI, and 

BBl3, among others, using machine learning classifiers such as XGBoost, Random Forest, SVR, and LSTM Regressor. Their 

result demonstrated that on average, EMA and HMA are among the most prominent features for describing market trends 

and regularizing irregular price movements, thereby accentuating smoother futures for visionary advancements through 

engineered features rather than simple fundamentals.  Nevertheless, while hybrid architectures have succeeded in 

learning temporal features, they may lack interpretability, which is addressed by XAI frameworks applied to hybrid 

representations at a later stage. According to the systematic review conducted by [vK24], the fusion of deep learning 

and XAI techniques improves the trustworthiness of financial prediction tasks. [MAKB24] applied momentum and 

volatility measures for classification using deep learning techniques. Their approach outperformed the SVM and 

Random Forest classifiers and, using SHAP and LIME explanations, confirmed that short-term momentum features 

influence prediction outcomes the most. [SL25] fused sentiment analysis and feature analysis with LSTM classification 

to achieve a 51.8% improvement in annual performance, as indicated by a higher Shap ratio for financial significance 

than RMSE values. De-spite advances in deep learning-based stock prediction, most of the works continue to 

emphasize statistical validity rather than financial viability [LKY+24]. In conclusion, most financial forecasting works 

include only price input features and are primarily evaluated using error metrics. Although technical analysis has 

improved trend volatility and removed inefficiencies, studies rarely assess ROIl4 in depth, focusing mainly on U.S. or 

Asian markets and largely ignoring UK business concerns. 

 

 

 

 

 

 

 

 
10Mean Squared Error  
11Machine learning  
12Hull Moving Average 

 13Bollinger Bands 
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3. Methodology3 

 

This study adopts the CRISP-DM [WH00] framework to ensure a structured, reproducible, and business-oriented process 

for the development and evaluation of stock forecasting models. The workflow begins with data acquisition for FTSE 100 

companies, and daily OHLCV data are enriched through feature engineering to generate technical indicators that capture 

trend and volatility. The data is then split into sliding windows, which serve as inputs to deep learning models (LSTM, 

GRU, CNN) for next-day forecasting. Daily OHLCV data are collected from Yahoo Finance for the period 2015 to 

2025. To capture the market structure beyond the raw price, a set of technical indicators is engineered. These include 

SMA, EMA, BB, and rolling standard deviation for volatility. Engineered indicators improve trend detection, but introduce 

correlation risks. All continuous inputs are scaled using Min-Max normalization, while volume data is log-transformed to 

reduce skewness. Forecasting was framed as a supervised time-series task using sliding windows of trading days to predict 

the next-day closing price. the Window (30 to 120 days) was empirically selected based on the stability of validation-loss to 

balance short-term sensitivity with contextual depth. Four deep learning architectures were implemented: LSTM, Bi-LSTM, 

GRU, and 1D-CNN, comparing shallow (single-layer) and deep (stacked) variants to evaluate temporal learning capacity. 

Each module in the proposed framework offers specific advantages and trade-offs. These Models are trained using an 80-

20 chrono-logical split with the Adam optimizer and a training loss function based on MSE. While deep learning 

models can effectively capture temporal dependencies, they re-quired careful regularization to prevent overfitting. The 

evaluation of the models was conducted in these complementary stages: First, statistical performance was tested 

using two input configurations: one with raw OHLCV data and another incorporating engineered technical indicators, 

across multiple window lengths (30-120 days). Each configuration and input is compared using MSE, and the model 

achieving the lowest MSE is selected for subsequent testing. To contextualize deep learning performance within 

traditional forecasting methods, SMA and EMA models were also tested as baseline benchmarks. These indicators are 

widely used by traders to smooth short-term volatility, highlight trend reversals, and generate buy-sell signals, making 

them suitable reference points for both metric and trading evaluations. Second, the best-performing structures were 

evaluated in a trading simulation to assess practical effectiveness. The simulation generated buy or sell signals when 

predicted price deviations exceeded a decision threshold, measuring cumulative portfolio gain or loss over 200 

simulated trading days. Third is return on investment test: Each experiment began with a notional capital of 

$1000 and applied a threshold-based trading strategy driven by the model's predicted price relative to the real 

market price. When the model estimated that a stock was undervalued (the predicted price exceeded the actual 

price by more than a defined threshold), buy action is opted. When the stock was judged overvalued (the predicted 

price fell sufficiently below the actual price), stocks will be sold, and capital was fully moved to cash. If the difference 

lay within the neutral band, the position was left unchanged. The strategy is therefore intended to exit the market 

before downward moves and re-enter ahead of upward moves. Finally, the interpretability of the model was examined 

using SHAP, applied in two analyzes: (1) assessing the contribution of each time step within the input window, and 

(2) ranking the most influential technical indicators driving the models' forecasts. This integrated process (Figure 

1) ensures that the framework captures not only predictive accuracy but also the relationship between loss-based 

metrics and real-world financial performance through trading simulation. By linking interpretability and return 

evaluation, the framework aligns with the study's objective of developing a transparent, practical, and actionable 

forecasting system for FTSE 100 stocks 

 
14Return on Investment 
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Figure 1: Methodology 0verview 

 

4. Experiments and results 

4.1 Experimental Settings 

All experiments are conducted in Python using TensorFlow and Scikit-learn and were executed on a laptop with an 

Intel Core i7 processor, 16GB RAM, and NVIDIA GPU acceleration, ensuring efficient model training. 

 

4.2 Models' metrics 

The performance of six forecasting models (SMA, EMA, CNN, LSTM, GRU, and Bi-LSTM) is summarized in Table 1. 

Each model is trained with window sizes ranging from 30 to 120 days. The first training uses only the OLHCV value. 

The next training includes Feature Engineering (FE) to find the best conditions for predictive accuracy. 

Table 1: Model Performance Comparison 

 

Model Best Window Loss Loss with FE Training Time 

SMA (baseline) 5 0.019 - 1 sec 

EMA (baseline) 5 0.016 - 1 sec 

CNN (shallow) 30 4.2-5.2×10−4 11-22×10−4 39 sec 

GRU (shallow) 120 15.1×10−4 16.0×10−4 362 sec 

LSTM (shallow) 30 3.85×10−4 3.82×10−4 66 sec 

Bi-LSTM (shallow) 30 2.4-4.2×10−4 1.2-1.6×10−4 630 sec 

 

Among the baseline models, EMA outperformed SMA because it reacts more quickly to recent price movements. 

All deep learning models had lower validation loss than the baselines, with LSTM performing best, followed by Bi-LSTM 

and CNN. GRU was slightly weaker. Deeper architectures reduced RMSE by 8-12%, though improvements plateaued 

after 2 layers. Analyzing the window size revealed that 30 to 60-day look-back periods were the most effective, 

confirming that recent data has the highest predictive value. Feature engineering mainly improved results for deeper 

models, especially Bi-LSTM, while shallow LSTM saw little benefit. This suggests that more complex architectures 

better utilize engineered features. Figure 2 depicts the predicted values for LSTM and actual FTSE ticker prices during 
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validation. The plot shows that LSTM follows the actual values more closely than SMA. It is also evident from this plot 

that, even for short-term fluctuations in both upward and downward markets, LSTM follows actual values more 

closely than SMA. 

 

 

 

Figure 2: Actual vs Predicted deep learning and baseline price 

 

Since actual values closely follow predicted values from LSTM, one can safely conclude that LSTM captures temporal 

dependencies to some extent but may be overfitting in some cases, as discussed in further detail in section 4.3 below. 

4.3 Trading Test 

In this section, all models tested in section 4.2 are evaluated using a unified back-testing framework to assess 

both predictive accuracy and trading profitability. 

 

Figure 3: Testbed with prices for CNN 30-day 

 

Figure 4: Testbed with prices for BI-LSTM 120-day 
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For each, training and validation are performed as before, using additional features and two window sizes. In the 

following figures, the blue-shaded area represents uninvested cash, the green area indicates invested capital, and the 

black line shows the total value of the portfolio over time. Some figures also show the predicted (purple) and actual 

(black) stock values, with their scales on the right. For starters, two of them are studied: 3 (CNN-30) shows that the 

model struggles to capture sustained market trends. It predicts sudden directional shifts every few days, leading to 

rapid buy-sell actions and unstable portfolio movement. This suggests that CNN reacts to short-term fluctuations 

rather than genuine trend changes. By contrast, figure 4 (Bi-LSTM-120) shows smooth and intentional trades. The 

strategy reacts only to major trades and takes longer to liquidate positions. It is apparent that during the market 

downturn from Day 210 to 230, Bi-LSTM adjusted correctly, moving to cash before recovering afterward. 

 

Figure 5 depict the performance of portfolios for the remaining setting parameters in the test data. For 

comparison, the basic SMA and EMA strategies resulted in few trades and missed several profitable opportunities to 

cash out, notably at the very end of the testing, leading to premature exit 

CNN and GRU tended to trade too frequently while experiencing erratic re-turns-likely acting too quickly while 

reacting to market fluctuations. Unlike others, LSTM and Bi-LSTM models-particularly Bi-LSTM-120-traded positions 

steadily while growing portfolios smoothly-suggesting good market awareness and effective capital management. 

Table 2 shows the return ranges associated with the corresponding testing results. Model stability: Model stability ranged 

from very high to very low: Bi-LSTM and GRU showed higher stability than others, but CNN-30 and LSTM-30 showed 

higher volatility. EMA-30, having high accuracy for deep learning tasks, showed equally good returns (8 to 13%), 

thereby proving. 

 

 

  

(a) EMA-lO (b) SMA-lO 

 

(c) BI-LSTM-l2O (d) BI-LSTM-3O 

 

(e) LSTM-3O (f) LSTM-l2O 
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(g) GRU-l2O (h) GRU-3O 

 

(i) CNN-l2O (j) CNN-3O 

 

Figure 5: Back-Test Result Examples 

 

Table 2: Model Cumulative Return Ranges 

 

Model Return Model Return Range 

Bi-LSTM-30 1% to 8% Bi-LSTM-120 7% to 11% 

GRU-30 2% to 16% GRU-120 3% to 9% 

LSTM-30 -3% to 13% LSTM-120 3% to 12% 

CNN-30 -16% to 17% CNN-120 -15% to 12% 

EMA-10 -2% to 4% EMA-30 8% to 13% 

SMA-10 -4% to 9% SMA-30 9% to 11% 

 

These observations clearly indicate that reliance on metrics alone is not an effective measure of market success. 

Models for stock prediction combined with market evaluation through actual market performance can capture market 

behavior associated with financial decision-making processes more effectively. 

4.4 Explainability 

Explainability analysis using SHAP showed consistent behavior across models. Values applied for days decline 

quickly over time, confirming that predictions relied mainly on recent price movements. The last three trading days 

always ranked in the top five, and the values returned to nominal after the tenth (Table 3). 

Table 3: SHAP Values by Day 

 

Days SHAP Value Days SHAP Value 

1 46 × 10−4 3 25 × 10−4 

2 44 × 10−4 26 35 × 10−4 

 

At first glance, this emphasis on short-term features may appear inconsistent with the back-testing results, which 

showed that longer lookback windows (120 days) produced higher and more stable profitability. This can be 
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reconciled by noting that although the decision signal arises from the most recent days, the longer historical window 

provides structural context, reduces overfitting, and smooths reactions to market noise. In other words, short-term 

patterns determine trade direction, while long-term context improves confidence and robustness, explaining why the 

longer-window models outperform despite SHAP showing localized influence. Feature-level SHAP scores further 

showed that raw price components (Close, High, Low, and Open) were the most influential inputs, while engineered 

indicators such as SMA-10, EMA-10, and Bollinger Bands contributed at lower magnitudes (Table 4). 

Table 4: Feature SHAP Values 

 

Feature SHAP Value Feature SHAP Value 

Close Price 14-57 × 10−4 EMA-10 11-15 × 10−5 

High Price 10-38 × 10−4 BB Bands 20-23 × 10−5 

Low Price 10-38 × 10−4 Log Return 0.7 × 10−5 

SMA-10 17-18 × 10−5 Volume 0.2-2 × 10−5 

 

To evaluate feature importance in a trading context, days with unusually high feature influence (>1.5X IQR 

above the median) were flagged and linked to trading outcomes. This "importance spike” analysis tested whether 

extreme feature dominance was associated with higher predictive confidence or better next-day returns (Table 5). 

Table 5: Model Important Features and Performance 

 

Model Most Important Features High Influence Days Profit Rate (%) 

Bi-LSTM Close --t Open --t High 148 / 110 / 102 32 / 32 / 32 

LSTM Close --t High --t Open 250 / 95 / 70 32 / 30 / 29 

GRU Close --t High --t Open 183 / 222 / 60 32 / 29 / 29 

 

No single feature consistently showed higher profit ratios during spiking events. While Close Price, High Price, and 

Open Price were the most significant input features across all models, high importance for any particular price feature 

did not necessarily translate into better trade performance. Technical indicators were secondary to price information 

and served as additional rather than major decision-making fac-tors. Altogether, the analysis of explanations indicates 

the financial reasonableness of the behavior of the respective models: they mostly focus on contemporary price 

dynamics, while features such as SMA and volatility help create a complete picture. This is consistent with other 

studies, such as [GU25], which also point to trend and volatility measures as crucial for predicting stock returns. 

Nevertheless, these models tend to use long time windows to smooth training and avoid making decisions based on 

transient observations. 

One of the primary contributions of this study is that it goes beyond the normal analysis of SHAP values. It not 

only aims to identify which features have high influence but also to check whether days with high feature importance 

values also result in high performance. The result shows that high influence for one feature, whether it is Close or 

High or Open prices, does not necessarily lead to high returns, confirming once again that profitability comes from 

combinations of different market scenarios and not from peak feature values alone. To the best of our knowledge, no 

one has explored this direct link between explanations and actual performance in XAI Finance before. 

 

5. Conclusion and Future Work 

This work demonstrated that deep learning techniques can be combined with feature engineering and back 

testing to generate effective, interpretable short-term trading signals for FTSE-100 stocks. While LSTM and Bi-LSTM 

achieved the lowest prediction errors, back-testing showed that high accuracy is not necessarily linked to high profits, 

as a simple EMA strategy also performed well. The most successful approaches were those that provided reliable 

directional information rather than minimizing loss, and for which GRU-30 and Bi-LSTM-120 provided the most reli-

able cumulative returns and drawdown performance. Alternatively, CNN and short-window LSTM approaches 

demonstrated erratic performance and signs of overfit-ting. The outcomes point to the capabilities and limitations of 

deep learning for trading. This is because traders are presented with outcomes differentiated by deep learning 

architecture, modest returns, and performance being affected by markets experiencing high volatility or market shifts. 

XAI analysis helped validate financial institutions: all models were mainly driven by price behavior across consecutive 
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periods. A new task evaluating the impact of SHAP importance spikes on trade outcomes' performance showed no 

benefit but underscored the importance of explanation capabilities for verifying model performance rather than raw 

metric scores. There are several ways future work can build on this study. First, it may be possible to integrate the 

testbed developed for this study and use reinforcement learning to automatically determine which strategy and 

model combination is best suited to each market condition. Second, to further improve robustness for market 

structure changes, researchers should implement shift-aware learning and stress tests. Third, future studies should 

explore new architectures for sequence modeling and introduce new modalities, such as market-related news, to 

enhance overall market sensitivity. Lastly, researchers should conduct further realistic back-testing while considering 

transaction costs and turnover limits to facilitate this, and present interpretable explanations to end users involved. 
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Appendix A. Train and validation curves 

 

(a) LSTM 3O (b) (c) (d) 

 

 

(a) LSTM 120 (b) (c) (d) 

 

 

(a) BI-LSTM 3O (b) (c) (d) 

 

(a) BI-LSTM 120 (b) (c) (d) 

 

    

(a) GRU 3O (b) (c) (d) 
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(a) GRU 120 (b) (c) (d) 

 

 

(a) CNN 3O (b) (c) (d) 

 

 

(a) CNN 120 (b) (c) (d) 

 

Figure A.13: Train and validation curve Examples 

 

Appendix B. Models' layers details 

 

 

(a) LSTM Deep (b) LSTM Shallow (c) BI-LSTM Shallow (d) BI-LSTM Deep 
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(a) CNN Deep (b) CNN Shallow (c) GRU Shallow (d) GRU Deep 

 

Figure B.15: Model Figures 

 


