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| ABSTRACT

This study examines stock price forecasting for FTSE 100 companies using deep learning and XAll. The research addresses the
disconnect between predictive accuracy and interpret ability in financial models by integrating data-driven forecasting with
transparent feature attribution. Four neural architectures: LSTM2, Bi-LSTM3, GRU4 and CNN5 are compared to classical
benchmarks: SMA6 and EMA7. Models are trained on OHLCV8 data augmented with technical indicators. Evaluation uses a
threshold-based trading strategy. The findings indicate that a lower prediction error does not necessarily result in higher
profitability. Although LSTM achieved the lowest prediction error, GRU and Bi-LSTM produced more stable cumulative returns
(16%), compared to the EMA benchmark (2%). SHAP9 analysis demonstrates that recent price movements and momentum
indicators, particularly SMA, drive model decisions.
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1 - Introduction

The central challenge in stock price forecasting lies not only in increasing predictive accuracy but also in turning such gains into
profitable, actionable investment decisions. Traditional methods, such as statistical time-series forecasting and financial ratio
analysis, often rely on linear assumptions which limits their applicability. Machine and deep learning approaches have improved
pattern recognition in market data. However, a critical disconnect remains: research often celebrates lower error rates without
proving impact on trading performance or model explainability. This paper tackles this gap by integrating feature engineering,
XAl, and simulated trading evaluation, we demonstrate how linking predictive outcomes to financial impact and transparent
model behavior advances both theoretical and practical finance.
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Feature engineering adds new features, such as EMA, SMA, VIX, and Bollinger Bands, to help models spot market
trends and volatility [Mos25]. Combining these features aims to give algorithms better market insight. The input
data are used to train deep learning models (LSTM, Bi-LSTM, GRU, CNN) and for comparison against classical
statistical measures (EMA and SMA) to support interpretation. Model performance is evaluated by MSE® and a
simulation approach that applies a threshold to assess profitability. XAl strategies, such as SHAP, are utilized to
interpret the influence of specific features and input dimensions on predictions. The remainder of this paper is
organized as follows. 2 reviews related work on stock prediction and explainable finance. 3 presents the methodology
and model design. 4 describes the experimental setup and the results. Section 5 discusses the findings, implications,
wraps up the paper, and outlines future research directions.

2. Related Work

Early attempts at stock market prediction relied on classical statistical techniques such as ARIMA and GARCH [BJ76]
[BJR15] [Bol86]. Although successful for linear series, they could not properly characterize the non-linear behavior
and volatility of financial markets [Fam70] [Tsa10]. To address this challenge, Deep learning and ML techniques have been
developed in stock data models as sequence data to take ad-vantage of temporal relationships to learn momentum,
volatility, and market trends [FK18] [NPdO17]. Recurrent Neural Network architectures based on LSTM and GRU layers have
also gained acceptance for financial projection because they can learn from temporal relationships in sequence data
[NPdO17] [FK18] [ZW21]. Hybrid models have also demonstrated successful applications. For example, [MK25] reported that
CNN-LSTM learning improved the predictability of returns relative to the benchmarks. [RJ25] de-signed an LSTM and real-
time sentiment analysis coupled with SHAP to generate interpretable buy or sell recommendations. Similarly, [KK19] and
[Lan25] emphasized the effectiveness of CNN-LSTM learning to identify patterns by focusing on local features and
dependencies to improve performance. Moreover, A Few researchers have tried to go beyond error measures for
validating their models. For example, [LKY+24] ranked portfolios to generate +31% annual excess returns using LSTM
on CSI 300 benchmarks. Additionally, all ML models rely on the input features provided to them and giving more
high quality data could help with its accuracy and wise versa, as widely established by the garbage-in-garbage-out
principle [ZW21]. Based on this rationale, [Mos25] examined 88 technical features, including EMA and HMA'? RSI, and
BB'3, among others, using machine learning classifiers such as XGBoost, Random Forest, SVR, and LSTM Regressor. Their
result demonstrated that on average, EMA and HMA are among the most prominent features for describing market trends
and regularizing irregular price movements, thereby accentuating smoother futures for visionary advancements through
engineered features rather than simple fundamentals.  Nevertheless, while hybrid architectures have succeeded in
learning temporal features, they may lack interpretability, which is addressed by XAl frameworks applied to hybrid
representations at a later stage. According to the systematic review conducted by [vK24], the fusion of deep learning
and XAl techniques improves the trustworthiness of financial prediction tasks. [MAKB24] applied momentum and
volatility measures for classification using deep learning techniques. Their approach outperformed the SVM and
Random Forest classifiers and, using SHAP and LIME explanations, confirmed that short-term momentum features
influence prediction outcomes the most. [SL25] fused sentiment analysis and feature analysis with LSTM classification
to achieve a 51.8% improvement in annual performance, as indicated by a higher Shap ratio for financial significance
than RMSE values. De-spite advances in deep learning-based stock prediction, most of the works continue to
emphasize statistical validity rather than financial viability [LKY+24]. In conclusion, most financial forecasting works
include only price input features and are primarily evaluated using error metrics. Although technical analysis has
improved trend volatility and removed inefficiencies, studies rarely assess ROI" in depth, focusing mainly on U.S. or
Asian markets and largely ignoring UK business concerns.
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3. Methodology

This study adopts the CRISP-DM [WHO00] framework to ensure a structured, reproducible, and business-oriented process
for the development and evaluation of stock forecasting models. The workflow begins with data acquisition for FTSE 100
companies, and daily OHLCV data are enriched through feature engineering to generate technical indicators that capture
trend and volatility. The data is then split into sliding windows, which serve as inputs to deep learning models (LSTM,
GRU, CNN) for next-day forecasting. Daily OHLCV data are collected from Yahoo Finance for the period 2015 to
2025. To capture the market structure beyond the raw price, a set of technical indicators is engineered. These include
SMA, EMA, BB, and rolling standard deviation for volatility. Engineered indicators improve trend detection, but introduce
correlation risks. All continuous inputs are scaled using Min-Max normalization, while volume data is log-transformed to
reduce skewness. Forecasting was framed as a supervised time-series task using sliding windows of trading days to predict
the next-day closing price. the Window (30 to 120 days) was empirically selected based on the stability of validation-loss to
balance short-term sensitivity with contextual depth. Four deep learning architectures were implemented: LSTM, Bi-LSTM,
GRU, and 1D-CNN, comparing shallow (single-layer) and deep (stacked) variants to evaluate temporal learning capacity.
Each module in the proposed framework offers specific advantages and trade-offs. These Models are trained using an 80-
20 chrono-logical split with the Adam optimizer and a training loss function based on MSE. While deep learning
models can effectively capture temporal dependencies, they re-quired careful regularization to prevent overfitting. The
evaluation of the models was conducted in these complementary stages: First, statistical performance was tested
using two input configurations: one with raw OHLCV data and another incorporating engineered technical indicators,
across multiple window lengths (30-120 days). Each configuration and input is compared using MSE, and the model
achieving the lowest MSE is selected for subsequent testing. To contextualize deep learning performance within
traditional forecasting methods, SMA and EMA models were also tested as baseline benchmarks. These indicators are
widely used by traders to smooth short-term volatility, highlight trend reversals, and generate buy-sell signals, making
them suitable reference points for both metric and trading evaluations. Second, the best-performing structures were
evaluated in a trading simulation to assess practical effectiveness. The simulation generated buy or sell signals when
predicted price deviations exceeded a decision threshold, measuring cumulative portfolio gain or loss over 200
simulated trading days. Third is return on investment test: Each experiment began with a notional capital of
$1000 and applied a threshold-based trading strategy driven by the model's predicted price relative to the real
market price. When the model estimated that a stock was undervalued (the predicted price exceeded the actual
price by more than a defined threshold), buy action is opted. When the stock was judged overvalued (the predicted
price fell sufficiently below the actual price), stocks will be sold, and capital was fully moved to cash. If the difference
lay within the neutral band, the position was left unchanged. The strategy is therefore intended to exit the market
before downward moves and re-enter ahead of upward moves. Finally, the interpretability of the model was examined
using SHAP, applied in two analyzes: (1) assessing the contribution of each time step within the input window, and
(2) ranking the most influential technical indicators driving the models' forecasts. This integrated process (Figure
1) ensures that the framework captures not only predictive accuracy but also the relationship between loss-based
metrics and real-world financial performance through trading simulation. By linking interpretability and return
evaluation, the framework aligns with the study's objective of developing a transparent, practical, and actionable
forecasting system for FTSE 100 stocks

“Return on Investment
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Figure 1: Methodology Overview

Postprocessing

4. Experiments and results
4.1 Experimental Settings

All experiments are conducted in Python using TensorFlow and Scikit-learn and were executed on a laptop with an

Intel Core i7 processor, 16GB RAM, and NVIDIA GPU acceleration, ensuring efficient model training.

4.2 Models' metrics

The performance of six forecasting models (SMA, EMA, CNN, LSTM, GRU, and Bi-LSTM) is summarized in Table 1.
Each model is trained with window sizes ranging from 30 to 120 days. The first training uses only the OLHCV value.

The next training includes Feature Engineering (FE) to find the best conditions for predictive accuracy.

Table 1: Model Performance Comparison

Model Best Window Loss Loss with FE Training Time
SMA (baseline) 5 0.019 - 1 sec
EMA (baseline) 5 0.016 - 1 sec
CNN (shallow) 30 42-52x104 11-22x1074 39 sec
GRU (shallow) 120 15.1x10™4 16.0x10™4 362 sec
LSTM (shallow) 30 3.85x10 3.82x10™4 66 sec
Bi-LSTM (shallow) 30 24-42x1074 1.2-1.6x10* 630 sec

Among the baseline models, EMA outperformed SMA because it reacts more quickly to recent price movements.
All deep learning models had lower validation loss than the baselines, with LSTM performing best, followed by Bi-LSTM
and CNN. GRU was slightly weaker. Deeper architectures reduced RMSE by 8-12%, though improvements plateaued
after 2 layers. Analyzing the window size revealed that 30 to 60-day look-back periods were the most effective,
confirming that recent data has the highest predictive value. Feature engineering mainly improved results for deeper
models, especially Bi-LSTM, while shallow LSTM saw little benefit. This suggests that more complex architectures
better utilize engineered features. Figure 2 depicts the predicted values for LSTM and actual FTSE ticker prices during
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validation. The plot shows that LSTM follows the actual values more closely than SMA. It is also evident from this plot
that, even for short-term fluctuations in both upward and downward markets, LSTM follows actual values more

closely than SMA.

FTSE Stock Price Prediction

210

380

360

340

Figure 2: Actual vs Predicted deep learning and baseline price

Since actual values closely follow predicted values from LSTM, one can safely conclude that LSTM captures temporal
dependencies to some extent but may be overfitting in some cases, as discussed in further detail in section 4.3 below.

4.3 Trading Test

In this section, all models tested in section 4.2 are evaluated using a unified back-testing framework to assess
both predictive accuracy and trading profitability.
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Figure 3: Testbed with prices for CNN 30-day
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Figure 4: Testbed with prices for BI-LSTM 120-day
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For each, training and validation are performed as before, using additional features and two window sizes. In the
following figures, the blue-shaded area represents uninvested cash, the green area indicates invested capital, and the
black line shows the total value of the portfolio over time. Some figures also show the predicted (purple) and actual
(black) stock values, with their scales on the right. For starters, two of them are studied: 3 (CNN-30) shows that the
model struggles to capture sustained market trends. It predicts sudden directional shifts every few days, leading to
rapid buy-sell actions and unstable portfolio movement. This suggests that CNN reacts to short-term fluctuations
rather than genuine trend changes. By contrast, figure 4 (Bi-LSTM-120) shows smooth and intentional trades. The
strategy reacts only to major trades and takes longer to liquidate positions. It is apparent that during the market
downturn from Day 210 to 230, Bi-LSTM adjusted correctly, moving to cash before recovering afterward.

Figure 5 depict the performance of portfolios for the remaining setting parameters in the test data. For
comparison, the basic SMA and EMA strategies resulted in few trades and missed several profitable opportunities to
cash out, notably at the very end of the testing, leading to premature exit

CNN and GRU tended to trade too frequently while experiencing erratic re-turns-likely acting too quickly while
reacting to market fluctuations. Unlike others, LSTM and Bi-LSTM models-particularly Bi-LSTM-120-traded positions
steadily while growing portfolios smoothly-suggesting good market awareness and effective capital management.

Table 2 shows the return ranges associated with the corresponding testing results. Model stability: Model stability ranged
from very high to very low: Bi-LSTM and GRU showed higher stability than others, but CNN-30 and LSTM-30 showed
higher volatility. EMA-30, having high accuracy for deep learning tasks, showed equally good returns (8 to 13%),
thereby proving.

(a) EMA-IO (b) SMA-IO

(c) BI-LSTM-I20 (d) BI-LSTM-30

(e) LSTM-30 (f) LSTM-I20
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(9) GRU-I20 (h) GRU-30

(i) CNN-I20 () CNN-30

Figure 5: Back-Test Result Examples

Table 2: Model Cumulative Return Ranges

Model Return Model Return Range
Bi-LSTM-30 1% to 8% Bi-LSTM-120 7% to 11%
GRU-30 2% to 16% GRU-120 3% to 9%
LSTM-30 -3% to 13% LSTM-120 3% to 12%
CNN-30 -16% to 17%  CNN-120 -15% to 12%
EMA-10 -2% to 4% EMA-30 8% to 13%
SMA-10 -4% to 9% SMA-30 9% to 11%

These observations clearly indicate that reliance on metrics alone is not an effective measure of market success.
Models for stock prediction combined with market evaluation through actual market performance can capture market
behavior associated with financial decision-making processes more effectively.

4.4 Explainability

Explainability analysis using SHAP showed consistent behavior across models. Values applied for days decline
quickly over time, confirming that predictions relied mainly on recent price movements. The last three trading days
always ranked in the top five, and the values returned to nominal after the tenth (Table 3).

Table 3: SHAP Values by Day

Days SHAP Value Days SHAP Value
1 46 x 10~ 3 25 x 1074
2 44 x 1074 26 35x 1074

At first glance, this emphasis on short-term features may appear inconsistent with the back-testing results, which
showed that longer lookback windows (120 days) produced higher and more stable profitability. This can be

Page | 55



Bridging Prediction and Profit: Deep Learning models with Trading Evaluation for FTSE 100

reconciled by noting that although the decision signal arises from the most recent days, the longer historical window
provides structural context, reduces overfitting, and smooths reactions to market noise. In other words, short-term
patterns determine trade direction, while long-term context improves confidence and robustness, explaining why the
longer-window models outperform despite SHAP showing localized influence. Feature-level SHAP scores further
showed that raw price components (Close, High, Low, and Open) were the most influential inputs, while engineered
indicators such as SMA-10, EMA-10, and Bollinger Bands contributed at lower magnitudes (Table 4).

Table 4: Feature SHAP Values

Feature SHAP Value Feature SHAP Value
Close Price 14-57 x 107 EMA-10 11-15 x 107>
High Price 10-38 x 10* BB Bands 20-23 x 107
Low Price 10-38 x 10~ Log Return 0.7 x107°
SMA-10 17-18 x 107> Volume 0.2-2 x 10~

To evaluate feature importance in a trading context, days with unusually high feature influence (>1.5X IQR
above the median) were flagged and linked to trading outcomes. This "importance spike” analysis tested whether
extreme feature dominance was associated with higher predictive confidence or better next-day returns (Table 5).

Table 5: Model Important Features and Performance

Model Most Important Features High Influence Days Profit Rate (%)
Bi-LSTM Close --t Open --t High 148 / 110 / 102 32/32/32
LSTM Close --t High --t Open 250 /95 /70 32/30/29
GRU Close --t High --t Open 183 /222 / 60 32/29/29

No single feature consistently showed higher profit ratios during spiking events. While Close Price, High Price, and
Open Price were the most significant input features across all models, high importance for any particular price feature
did not necessarily translate into better trade performance. Technical indicators were secondary to price information
and served as additional rather than major decision-making fac-tors. Altogether, the analysis of explanations indicates
the financial reasonableness of the behavior of the respective models: they mostly focus on contemporary price
dynamics, while features such as SMA and volatility help create a complete picture. This is consistent with other
studies, such as [GU25], which also point to trend and volatility measures as crucial for predicting stock returns.
Nevertheless, these models tend to use long time windows to smooth training and avoid making decisions based on
transient observations.

One of the primary contributions of this study is that it goes beyond the normal analysis of SHAP values. It not
only aims to identify which features have high influence but also to check whether days with high feature importance
values also result in high performance. The result shows that high influence for one feature, whether it is Close or
High or Open prices, does not necessarily lead to high returns, confirming once again that profitability comes from
combinations of different market scenarios and not from peak feature values alone. To the best of our knowledge, no
one has explored this direct link between explanations and actual performance in XAl Finance before.

5. Conclusion and Future Work

This work demonstrated that deep learning techniques can be combined with feature engineering and back
testing to generate effective, interpretable short-term trading signals for FTSE-100 stocks. While LSTM and Bi-LSTM
achieved the lowest prediction errors, back-testing showed that high accuracy is not necessarily linked to high profits,
as a simple EMA strategy also performed well. The most successful approaches were those that provided reliable
directional information rather than minimizing loss, and for which GRU-30 and Bi-LSTM-120 provided the most reli-
able cumulative returns and drawdown performance. Alternatively, CNN and short-window LSTM approaches
demonstrated erratic performance and signs of overfit-ting. The outcomes point to the capabilities and limitations of
deep learning for trading. This is because traders are presented with outcomes differentiated by deep learning
architecture, modest returns, and performance being affected by markets experiencing high volatility or market shifts.
XAl analysis helped validate financial institutions: all models were mainly driven by price behavior across consecutive
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periods. A new task evaluating the impact of SHAP importance spikes on trade outcomes' performance showed no
benefit but underscored the importance of explanation capabilities for verifying model performance rather than raw
metric scores. There are several ways future work can build on this study. First, it may be possible to integrate the
testbed developed for this study and use reinforcement learning to automatically determine which strategy and
model combination is best suited to each market condition. Second, to further improve robustness for market
structure changes, researchers should implement shift-aware learning and stress tests. Third, future studies should
explore new architectures for sequence modeling and introduce new modalities, such as market-related news, to
enhance overall market sensitivity. Lastly, researchers should conduct further realistic back-testing while considering
transaction costs and turnover limits to facilitate this, and present interpretable explanations to end users involved.
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Appendix A. Train and validation curves
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Figure A.13: Train and validation curve Examples

Appendix B. Models' layers details

(a) LSTM Deep

(b) LSTM Shallow
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) J output ] (Mone, 120, 128) ‘ I ontput ] (None. 120, 256) |

input: | (None, 120, 128) input: | (None, 120, 64)
LSTM LSTM

output: (None, 64) output: (None, 32)

Bidirectoml ST [ gt | 0one, 120, 125 | . [[mput: | vone. 120, 256) |
iclirectional(Ls
| ouput- | one o0 | [ontpur: | gvone. 128) |
input: | (None, 64) input: | (None, 32)
Dense Dense
output: | (None, 50) oufput: | (None, 50)

nput: | (None, 50) input: | (None, 50)
Denge Denge

output: | (None, 1) output: | (Nome, 1)

(¢) BI-LSTM Shallow

(d) BI-LSTM Deep
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input: | [(None, 120, 15)]
InputLayer
output: | [(None, 120, 15)]
iput: | (None, 120, 15)
ConvlD
output: | (None, 115, 16)
input: one, 115, 16
ConvlD ! Ll )
output: | (None, 110, 8)
input: one, 110, §
Flatten ! o )
output: (None, §30)
input: | (None, 880)
Denge
output: | (None, 50)
input: | (None, 50)
Dense
output: | (None, 1)

(a) CNN Deep

input: | [(None, 30, 15)]
InputLayer
output: | [(None, 30, 15)]
input: | (None, 30, 15)
ConvlD
output: | (None, 25, 8)
input: | (None, 23, §)
Flatten
output: | (None, 200)
input: | (None, 200)
Denge
output: | (None, 50)
mnput: | (None, 50)
Dense
output: [ (None, 1)

(b) CNN Shallow

Figure B.15: Model Figures

input: | [(None, 120, 15)] input: | [(None, 120, 15)]
InputLayer InputLayer
output: | [(None, 120, 15)] oufput: | |(None, 120, 15)]
nput: | (None, 120, 15) input: (None, 120, 15)
GRU GRU

output: | (None, 120, 64)

output: | (None, 120, 128)

'

input: | (None, 120, 64)

input: | (None, 120, 128)

GRU GRU

output: (None, 32) output: (None, 64)
input: | (None, 32) input: | (None, 64)

Dense Dense
output: | (None, 50) output: | (None, 50)
input: | (None, 50) input: | (None, 50)

Dense Denge
output: | (None, 1) output: | (None, 1)

(¢) GRU Shallow

(d) GRU Deep
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