
Journal of Mechanical, Civil and Industrial Engineering 

ISSN: 2710-1436 

DOI: 10.32996/jmcie 

Journal Homepage: www.al-kindipublisher.com/index.php/jmcie 

   JMCIE  
AL-KINDI CENTER FOR RESEARCH  

AND DEVELOPMENT  

 

Copyright: © 2023 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

    Page | 40  

| RESEARCH ARTICLE 

An Iterative Three-Stage Neighborhood Search for Solving Precedence Constrained 

Agricultural Land Investment Problem  

Rafid Salih Sarhan1 ✉ and Sagvan Ali Saleh2 

12Department of Electrical and Computer Engineering, University of Duhok, Zakho Street, Duhok, Kurdistan region, Iraq 

Corresponding Author: Rafid Salih Sarhan, E-mail: Rafid@uod.ac 

 

| ABSTRACT 

The use of neighborhood search techniques to address a practical issue faced by agricultural investors is examined in this study. 

The problem is named as agricultural land investment problem with precedence constraints and it has an essential impact on 

agriculture issues. The tackled problem can be viewed as a variant of the well-known classical 0-1 knapsack problem where 

precedence constraints are imposed on pairs of items. Precedence constraints take into account a precedence relation between 

items. This paper first simulates the considered problem as precedence constraints knapsack problem and presents a 

mathematical representation model. Then, an iterative three-stage neighborhood search method is proposed for optimizing the 

problem. The proposed method consists of three stages. First stage applies a greedy procedure in order to construct a feasible 

solution. Second stage applies local search procedures in order to enhance the quality of the solutions at hand. Third and last, in 

order to broaden the search space, a random neighborhood destruction approach is introduced. Finally, the effectiveness of the 

suggested approach is assessed and contrasted with the outcomes obtained by greedy and local search techniques. The 

presented method is competitive and efficient since it produces excellent solutions in a reasonable amount of time. 

| KEYWORDS 

Precedence constraints, 0-1 Knapsack, Heuristic, and Neighborhood search  

| ARTICLE INFORMATION 

ACCEPTED: 20 May 2023                                PUBLISHED: 03 June 2023                    DOI: 10.32996/jmcie.2023.4.2.6 

 

1. Introduction 

Numerous real-world scenarios can be represented as combinatorial optimization problems to be solved. One of these situations 

belongs to agriculture, where a large amount of agricultural land needs to be invested. The problem is that numerous plant 

varieties can be grown with little money and time. The price of raising each plant varies. However, every one of them is making a 

profit. In addition, according to some farmers' needs, precedence constraints are imposed, i.e., several chains of plants must be 

considered (Nancel-Penard, et al., 2022). However, the objective is to maximize the profit of land investment with the 

consideration of precedence constraints (Aslan, et al., 2023). This problem is a variant of the agricultural land investment problem 

(ALIP) presented by Saleh (Saleh, 2018) with the variant, where precedence constraints have been presented and imposed on 

pairs of items. Precedence is constrained considering a precedence relation between items, i.e., some items must precede others 

(Samphaiboon & Yamada, 2000). The tackled problem is named the precedence constraints agricultural land investment problem 

(PCALIP). This paper investigates using neighbourhood search techniques to optimize the considered problem. As is obvious, the 

PCALIP is an NP-hard problem. The precedence constraints knapsack problem (abbreviated PCKP) is a well-known combinatorial 

optimization problem that can be used to simulate the PCALIP in order to streamline the treatment of the issue. In fact, 

numerous real-world scenarios can be recreated as members of the KP family in a range of fields, including the computer 

sciences. (Kellerer, et al., 2014).  



JMCIE 4(2): 40-46 

 

Page | 41  

The PCALIP is characterized by a knapsack of capacity 𝑐; a set 𝐼 of 𝑛 items, and a set 𝐸 of precedence relationships imposed on 

items, where 𝐸 ⊆ 𝐼 × 𝐼. A precedence relationship (𝑖, 𝑗) ∈ 𝐸 exists if item 𝑖 can be selected and placed in the knapsack only if item 

𝑗 is in the knapsack. Each item 𝑖 ∈ 𝐼 is represented by a nonnegative weight 𝑤𝑖 and a profit 𝑝𝑖. The PCALIP is the problem of 

maximizing the total profit of products that can fit in the knapsack and whose combined weight does not go above the 

knapsack's carrying capacity while also satisfying the order of precedence. In order to tackle and optimize the considered 

problem, it is simulated as an optimization problem, known as the precedence-constrained knapsack problem (Boland, et al., 

2012). Therefore, the mathematical representation of PCALIP can be written as follows: 

 

                       𝑀𝑎𝑥 ∶                                𝑓(𝑥) = ∑ 𝑝𝑖  𝑥𝑖
𝑛
𝑖=1                                                ………... (1) 

                       𝑠. 𝑡.                                    ∑ 𝑤𝑖  𝑥𝑖  ≤ 𝑐𝑛
𝑖=1                                                    ………… (2) 

              𝑥𝑖  ≤  𝑥𝑗                 ∀ (𝑖, 𝑗)  ∈ 𝐸                            ………… (3) 

                                                              𝑥𝑖  ∈ {0,1}            ∀𝑖 ∈ 𝐼 = {1, … , 𝑛}                 ..……….. (4) 

Where 𝑥𝑖 , ∀ 𝑖 ∈ 𝐼, is equal to 1 if the i-th item is placed in the knapsack (i.e., selected in the solution); and 0 otherwise.  Equation 

(1) is the objective function, where the goal is to maximize the total profit. Equation (2) represent the knapsack constraint with 

capacity c, which imposes that the total weight must not exceed the knapsack capacity. Equation (3) represents the precedence 

constraints which ensure the precedence relationships. Equation (4) represents the integral constraints (i.e., the item is selected 

when “𝑥𝑖 = 1” or excluded from the solution when “𝑥𝑖 = 0”). In order to avoid trivial cases, it is assumed that: the input 

data 𝑐, 𝑤𝑖 , 𝑝𝑖 , ∀ 𝑖 ∈ 𝐼, are positive integers, and ∑ 𝑤𝑖  > 𝑐𝑖∈𝐼  (Hifi et al., 2015).  

From the mathematical representation of the PCALIP, we can observe that the solution domain of a 0-1 knapsack problem can 

be characterized by Equation (2) and Equation (4). By adding, Equation (3), the problem is changed and becomes another variant 

of the classical 0-1 knapsack problem, known as the precedence-constrained knapsack problem. In other words, the PCALIP 

reduces to the classical knapsack problem when the precedence constraint is omitted, i.e., 𝐸 =  ∅ (Boland et al., 2012).  

This paper is organized as follows. Section two reviews some related works. Section three introduces a random neighborhood 

search approach for optimizing the PCALIP. Section four evaluates the performance of the proposed method and analyzes the 

obtained results. Finally, section five summarizes the contents of the paper. 

2. Related Works: 

PCALIP is an NP-hard combinatorial optimization problem. As illustrated in the previous section, it is simulated (in this paper), as 

the Precedence Constrained Knapsack Problem (abbreviated to PCKP). Therefore, the solution procedures dedicated to solving 

PCKP are also suitable for optimizing the PCALIP (Kellerer et al., 2013). 

The literature does, however, include solution strategies that are either accurate or approximatively. Boland et al. in (Boland, et 

al., 2012) presented an exact method based on clique inequalities for determining facets of the PCKP polyhedron. Significant 

reductions in branch-and-bound nodes and overall solution time were achieved by adding these inequalities at the root node. 

Samphaiboon and Yamada (Samphaiboon & Yamada, 2000) present exact and approximate methods. They present dynamic 

programming algorithms as well as preprocessing methods to solve PCKP. Dynamic programming can solve small PCKPs 

instances to optimality, while using the preprocessing method, they solved the problem with up to 2000 items in a few minutes. 

You and Yamada (You & Yamada, 2007) present a pegging approach based on Lagrangian relaxation followed by a pegging test. 

This approach is an exact method where the size of the original problem is reduced to be solved within a few minutes. Maiti et 

al., in (Maiti et al., 2021) presented a specific breakpoint algorithm which can search appropriate breakpoints of parametric 

maximum flow-related problems. The algorithm is used to solve lagrangian relaxed PCKP as well as linear programming relaxed 

PCKP in mine pushback design. Then, the topo sort is used to produce feasible solutions. 

This paper proposes an iterative three-stages neighborhood search for optimizing the PCALIP. The first stage serves to construct 

a feasible solution. The second stage applies local search procedures to enhance the current soltion. Third stage serves to 

diversify the search space by using a random neighborhood-destroying strategy. 

3. An iterative three-stage resolution search  

Neighborhood search methods have already proven their efficiency in developing efficient algorithms to approximate large-scale 

combinatorial optimization problems (Aarts & Lenstra, 2018). In this paper, a collection of such techniques have been used to 

optimize the PCALIP. 



An Iterative Three-Stage Neighborhood Search for Solving Precedence Constrained Agricultural Land Investment Problem 

Page | 42  

This section presents the main steps of the proposed solution procedure, which can be viewed as an iterative three-stage 

neighbourhood search. The first stage uses a greedy method to construct a feasible solution. Such a stage construct a solution 

by solving 0-1 knapsack problem with the precedence constraints. The second stage applies local search in order to improve the 

solution at hand. Such a stage can be viewed as an intensification stage because it tries to enhance the solutions by applying an 

exchange technique, where some items are removed to add others. Third stage applies a random destroying strategy by 

removing and degrading a rather large percentage of items from the current soltuion. This stage can be viewed as a 

diversification stage in order to diversify the search process. The above three stages are iteratived until satisfying a stopping 

condition. 

3.1 First stage of constructing a feasible solution  

This section demonstrates how to identify a PCALIP solution that is viable. Indeed, the first stage's main purpose is to construct a 

fast solution. For this reason, a greedy procedure is the most suitable choice among heuristics solution procedures.  Greedy 

solution procedures can construct a quick fix that is implemented piece by piece and prioritizes an immediate improvement 

above consequences (Hifi, et al., 2015). In general, this type of neighborhood search technique does not ensure the optimality of 

the solutions, but it is very fast for determining feasible solutions (Ausiello, et al. 2012).  

Algorithm 1 illustrates the first stage of the proposed solution procedure for solving PCALIP, where a greedy method is 

considered. This algorithm is used mainly for two aims: (i) to determine a starting solution, and (ii) to complete a destroyed 

solution obtained from stage 3 (as explained later in section 3.3). In both cases, it yields a fast feasible solution for PCALIP.  

The major steps of the proposed greedy strategy are illustrated in Algorithm 1, in which a workable solution is pieced together 

successively. It starts by initialization the problem  𝑃𝑃𝐶𝐴𝐿𝐼𝑃. Step 3 defines a decision variable 𝑥𝑖 , this variable determines whether 

the 𝑖 − 𝑖𝑡𝑒𝑚 is selected or not in the solution. This means that, if 𝑥𝑖 = 1, the 𝑖 − 𝑖𝑡𝑒𝑚 is placed in the knapsack, while if 𝑥𝑖 = 0, the 

corresponding item is not selected in the solution, i.e., doesn’t placed in the knapsack. Steps 4-11 represent the main loop of the 

procedure. In this loop, each 𝑖 − 𝑖𝑡𝑒𝑚 is selected in a sequential manner under the following condition: if it is free, i.e.,  𝑥𝑖 = 0. 

Steps 6-7 ensure that, before putting any item in the knapsack, all its precedence must be selected in the solution, i.e., their 𝑥𝑖 =

1. Otherwise, stop and try other 𝑖 − 𝑖𝑡𝑒𝑚. In all cases, before selecting any item in the solution, the knapsack constraint is 

checked (see step 5).  

Algorithm 1: A feasible solution construction of PCALIP 

Input   : 𝑃𝑃𝐶𝐴𝐿𝐼𝑃, an instance of the problem 

Output:𝑆𝑃𝐶𝐴𝐿𝐼𝑃, a feasible solution 

1:  Initialize 𝑃𝑃𝐶𝐴𝐿𝐼𝑃,  

2:  Let i be the total number of items 

3:  Let 𝑥𝑖 be the decision variables of ith items. 

4:  While  𝑖 ≥ 0   

5: While ( 𝑥𝑖 = 0   &&   the knapsack constraint is not violated) 

6|:      Set 𝑥𝑖 = 1 of all the precedence of 𝑖 − 𝑖𝑡𝑒𝑚  

7:    Set 𝑥𝑖 = 1 of the 𝑖 − 𝑖𝑡𝑒𝑚 

8:    Update the solution 𝑆𝑃𝐶𝐴𝐿𝐼𝑃 

9:  End While 

10: 𝑖 =  𝑖 −  1 

11: End While 

12: return 𝑆𝑃𝐶𝐴𝐿𝐼𝑃  

3.2 Second stage: local search to find the local optima solution 

This section shows how the solution at hand can be enhanced. The main purpose of this stage is to improve the quality of the 

solution obtained from the first stage. Therefore, a local search method is proposed as an intensification procedure to enhance 

the solution and find the local optimum solution (Hifi et al., 2015). The proposed method belongs to neighborhood search 

methods, which can be viewed as a variant of an exchange technique, where some items are removed from the solution to add 

others (Aarts & Lenstra, 2018).  

Algorithm 2 presents the second stage where a local search procedure is proposed to enhance the current solution. 

 

 

 



JMCIE 4(2): 40-46 

 

Page | 43  

Algorithm 2: local search method to enhance the solution  

Input   :𝑆𝑃𝐶𝐴𝐿𝐼𝑃, a feasible solution obtained from Algorithm 1 

Output: 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
∗  an enhanced solution 

1: Let i be the total number of items 

2: let 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
′  be a reduced problem 

3: let 𝛽 = 5% of 𝑆𝑃𝐶𝐴𝐿𝐼𝑃 (i.e., remove 5% of items from the current solution) 

4: While  𝛽 ≥ 0 

5:  Remove 𝑖𝑡𝑒𝑚 𝛽 from 𝑆𝑃𝐶𝐴𝐿𝐼𝑃 

6:  Remove all the successors of 𝑖𝑡𝑒𝑚 𝛽  

7:  Update the reduce problem 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
′  

8:  𝛽 =  𝛽 − 1 

9: End While 

10: While 𝑖 ≥ 0 

11: If 𝑖𝑡𝑒𝑚 𝑖 = 0 && the knapsack constraint is not violated  

12:  Add the precedencies of 𝑖𝑡𝑒𝑚 𝑖 in 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
′  

13:  Add 𝑖𝑡𝑒𝑚 𝑖 in 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
′  

14:  Update 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
′  

15: End If 

16: 𝑖 = 𝑖 + 1 

17: End While 

18: Return 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
∗  

 

Algorithm 2 illustrates the main steps of the proposed local search method. The algorithm starts with a solution obtained from 

Algorithm 1 and tries to enhance it. Steps 4-17 illustrate the main loops in the algorithm. The main idea is that remove randomly 

5% of items from the solution obtained from Algorithm 1 (see steps 4-9), then try to add other items considering the knapsack 

and precedence constraints (see steps 10-17). This process continues for all not selected items (i.e., 𝑥𝑖 = 0).  

3.3 Third stage: a random destroying strategy to diversify the solution space  

This section shows how the search process can be diversified in order to escape from a series of local optimum solutions. For 

this, a random destroying strategy is proposed as a diversification procedure. This strategy tries to randomly explore the sub-

solution spaces to find the best local solution (Hifi et al., 2014). 

Algorithm 3 illustrates the third stage where a random destroying strategy is proposed to diversify the solution search space. 

Algorithm 3: a random destroying strategy to diversify the solution search space  

Input   :𝑆𝑃𝐶𝐴𝐿𝐼𝑃
∗ , an enhanced solution obtained from stage 2 

Output: 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
𝑑  a destroyed solution 

1: let 𝛼 be the number of items to be removed from a solution 

2: While 𝛼 ≥ 0 

3:  Select an 𝑖 − 𝑖𝑡𝑒𝑚 randomly from the current solution 

4:  𝑥𝑖 = 0   ; to remove 𝑖 − 𝑖𝑡𝑒𝑚 from the solution 

5:  Update the destroyed solution 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
𝑑  

6:  𝛼 =  𝛼 − 1 

7: End While 

Return 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
𝑑  

Algorithm 3 shows the main steps of the proposed diversification strategy. The algorithm starts with the solution obtained from 

stage 2 and tries to diversify the search process by applying a random destroying procedure. Steps 2-7 show the main steps in 

this algorithm. The idea is that, destroy the current solution obtained from stage two by removing 𝛼% of its items (see steps 3-

5). The destroyed solution (𝑆𝑃𝐶𝐴𝐿𝐼𝑃
𝑑 ) then goes back to algorithm 1 to be completed and provide another feasible solution. This 

process is iterated until satisfying a stopping condition.  

3.4 Overall Algorithm  

This section illustrates the overall algorithm proposed in this work: an iterated three-stage neighborhood search for Solving 

PCALIP. 



An Iterative Three-Stage Neighborhood Search for Solving Precedence Constrained Agricultural Land Investment Problem 

Page | 44  

Algorithm 4 presents the main steps of the overall algorithm. Steps 1-6 show the main loop, where the three stages are iterated 

until the stopping condition is satisfied. Herein, the stopping condition considered is the number of iterations. 

Algorithm 4: an iterative three-stage neighbourhood search 

Input   : 𝑃𝑃𝐶𝐴𝐿𝐼𝑃, an instance of the problem 

Output:𝑆𝑃𝐶𝐴𝐿𝐼𝑃
∗ , the best local solution obtained 

1: While stopping criteria is not satisfied 

2:   Apply Algorithm 1 to determine a feasible solution  

3:  Apply Algorithm 2 to enhance the solution solution  

4:   Apply Algorithm 3 to diversify the search process  

5:   Update 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
∗  the best solution found 

6: End While  

Return 𝑆𝑃𝐶𝐴𝐿𝐼𝑃
∗  

4. Computational Results 

This section investigates the effectiveness of the proposed Iterative three-stage Resolution Search (abbreviated to IRSPC) on an 

instance consisting of 1000 items with 55 pairs of precedence relations, which has been generated randomly by using a special 

program. The algorithm IRSPC was coded in C++ on a computer with Pentium Core i5 CPU at 2.5 GHz. 

First step in the computational results investigates the performance of a greedy procedure for solving the PCALIP (Algorithm 1). 

Recall that, (see Section 3.1), the purpose of this algorithm is to produce a fast, feasible solution. This has been achieved as 

illustrated in Table 1. The algorithm yields an objective value equal to 226362 within 0.015 second. 

 

Table 1: The performance of greedy procedure (Algorithm 1) 

Greedy algorithm 

Objective value 226362 

Time (s) 0.015 s 

 

Second step in the computational results evaluates the effectiveness of the local search procedure, illustrated in Algorithm 2, to 

enhance the solution at hand. In fact, the proposed algorithm works as an intensification procedure to enhance the solution 

within a short time, by removing 5% of items from it and adding others. This has been achieved as shown in Table 2, where the 

objective value has been enhanced from 226362 to 271224 within 0.047s. 

Table 2: The performance of the local search procedure (Algorithm 2) 

 Greedy local search procedure 

Objective value 226362 271224 

Time (s) 0.015 s 0.047s 

 

Third step in the computational results investigates the performance of the random destroying strategy, presented in Algorithm 

3. In this algorithm, 𝛼% of items are removed randomly from the solution obtained from Algorithm 2, in order to degrade it and 

escape to other sub-solution space. This degradation diversifies the search process and drives the solution procedure to explore 

a series of solution sub-spaces randomly, trying to escape from a series of local optimum solutions. The destroyed solution is 

then reconstructed again by using Algorithm 1 and 2. The IRSPC is iterated until satisfying the stopping condition. Herein, the 

stopping condition is the number of iterations (see Algorithm 4). However, in order to evaluate the performance of IRSPC two 

criteria have been considered: (i) the 𝛼%; percentage of the removed items, (ii) the total number of iterations. 

Table 3 illustrates the performance of IRSPC when the number of iterations is fixed to 200 iterations, while, 𝛼 is ranged according 

to the following, 𝛼 = 10%, 20%, 30%, and 40%. 

 



JMCIE 4(2): 40-46 

 

Page | 45  

Table 3: The performance of the IRSPC with the variation of 𝛼 

 
𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝛼 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  200 

 𝛼 = 10% 𝛼 = 20% 𝛼 = 30% 𝛼 = 40% 

Solution 338882 345898 342046 335164 

Time (s) 12.316 s 14.83 20.18s 21.64 

 

Table 3 shows the objective values and the solution times reached by the IRSPC. One can observe that, the best solution can be 

obtained with 𝛼 = 20%. Moreover, the solution time increases with the increase of 𝛼. So, for the next step of the computational 

results, the 𝛼 is fixed to 20%, while the number of iterations is ranged as follows: 100, 200, 300, and 400 iterations.  

Table 4: The performance of the IRSPC with the variation of iterations 

 
𝛼 =  20% 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  

No. of iterations 100 200 300 400 

Solution 345378 345912 346178 346432 

Time (s) 7.8 s 14.21 s 21.37 s   31 s 

 

Table 4 illustrates the performance of IRSPC when 𝛼 is fixed to 20% and the number of iterations is varied. As it is clear that, the 

quality of solutions increased with the increasing of iterations, meanwhile the required solution times are increased. For 400 

iterations, the algorithm yields the best solutions within 31 seconds. In fact, the quality of solutions has priority. Therefore, the 

algorithm was tuned to 400 iterations for the next step of the computational results. 

Table 5 shows the performance of IRSPC compared with the greedy algorithm (Algorithm 1), and the local search procedure 

(Algorithm 2). 

Table 5: The performance of IRSPC with compare with greedy and the local search  

 Greedy local search procedure IRSPC 

Solution 226362 271224 346432 

Time (s) 0.015 s 0.047s 31 s 

 

From Table 5, one can observe that the performance of IRSPC for solving the considered problem is better than the greedy 

(Algorithm 1) and the local search (Algorithm 2). IRSPC produces a high-quality solution of 346432, while the greedy and the 

local search produce 226362 and 271224 respectively. Although, the required solution time for IRSPC is much more than those 

needed by both algorithms. The IRSPC required about 31 seconds to produce its output, while the other algorithms yield their 

outputs in 0.015, and 0.047 seconds respectively. 

Conclusions:  

This paper proposes a heuristic approach for solving a real-life situation with precedence constraints in the agricultural land 

investment problem. This work's contribution is that the tackled problem has been simulated as a combinatorial optimization 

problem known as PCKP. Second, a mathematical representation model was proposed to represent the problem. Third and last, 

an iterative three-stage neighborhood search heuristic is proposed for solving the considered problem. The proposed solution 

method consists of three stages. First stage yields a feasible solution by using a greedy procedure. The greedy algorithm yields a 

fast solution of moderate quality. Second stage improves the solution at hand by using a local search method. The local search 

solution procedure improves the solution at hand but falls in a local optimum solution. The third and last stage diversifies the 

solution search space using a random neighborhood search technique. This technique proved its efficiency in escaping from a 



An Iterative Three-Stage Neighborhood Search for Solving Precedence Constrained Agricultural Land Investment Problem 

Page | 46  

series of local optimum solutions. The three stages were iterated, searching for the best local solution. The computational results 

show the proposed heuristic algorithm's effectiveness for producing high-quality solutions in an acceptable running time.  

Funding: This research received no external funding.  
Conflicts of Interest: The authors declare no conflict of interest. 
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of 

their affiliated organizations, or those of the publisher, the editors and the reviewers.  

 

References  

[1] Aarts , E., & Lenstra, J. (2018). Local search in combinatorial optimization. Princeton University Press. 

[2] Aslan, A., Ursavas , E., & Romeijnders, W. (2023). A Precedence Constrained Knapsack Problem with Uncertain Item Weights for Personalized 

Learning Systems. Omega, 115, 102779. 

[3] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., & Protasi, M. (2012). Complexity and Approximation: Combinatorial Optimization Problems 

and Their Approximability Properties. Berlin Heidelberg: Springer Science & Business Media. 

[4] Boland, N., Bley, A., Fricke, C., Froyland, G., & Sotirov, R. (2012). Clique-based facets for the precedence constrained knapsack problem. 

Mathematical Programming volume 133, 481–511 . 

[5] Hifi, M., Saleh, S., & Wu, L. (2014). A Fast Large Neighborhood Search for Disjunctively Constrained Knapsack Problems. Combinatorial 

Optimization volume 8596 (pp. 396-407). Springer, Cham. 

[6] Hifi, M., Saleh, S., & Wu, L. (2015). A hybrid guided neighborhood search for the disjunctively constrained knapsack problem. Cogent 

Engineering, 2:1, 1-25. 

[7] Kellerer, H., Pferschy, U., & Pisinger, D. (2013). Knapsack Problems. Berlin Hedelberg: Springer Science & Business Media. 

[8] Maiti, N., Pathak, P., & Samanta, B. (2021). An efficient algorithm for the precedence constraint knapsack problem with reference to large-

scale open-pit mining pushback design. Mining Technology, 130:1, 8-21. 

[9] Nancel-Penard , P., Morales, N., & Cornillier, F. (2022). A recursive time aggregation-disaggregation heuristic for the multidimensional and 

multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem. European Journal 

of Operational Research, 303(3), 1088-1099. 

[10] Pacheco, P. (2011). An Introduction to Parallel Programming. USA: Morgan Kaufmann Publishers. 

[11] Saleh, S. A. (2018). A Parallel Heuristic Method for Optimizing a Real Life Problem (Agricultural Land Investment Problem). Academic Journal 

of Nawroz University, 7(4),, 168–172. 

[12] Samphaiboon, N., & Yamada, Y. (2000). Heuristic and Exact Algorithms for the Precedence-Constrained Knapsack Problem. Journal of 

Optimization Theory and Applications volume 105, 659–676. 

[13] You , B., & Yamada, T. (2007). A pegging approach to the precedence-constrained knapsack problem. European Journal of Operational 

Research, Volume 183, Issue 2, 618-632. 

 

 

 

 


