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| ABSTRACT

This article examines the intersection between mathematical modeling, artificial intelligence (Al), and blockchain technology as a
way of strengthening cybersecurity in national critical infrastructures (NCI). The increasing frequency and sophistication of cyber
threats against vital infrastructures, such as electrical grids, healthcare information networks, and transportation infrastructures,
creates the need to develop some innovative protective mechanisms. To solve these concerns, in the article the authors propose
a hybrid framework that combines the Al-driven predictive analysis and the decentralized ledger capabilities of blockchain
technology. Decentralized ledger technology (DLT) forms the backbone of secure and tamper-proof data management and
machine learning algorithms are used to identify and predict emerging threats in real-time. By combining the immutability of the
blockchain technology and the adaptive analytical capabilities of Al, this framework aims to improve the integrity of the data,
maintain the privacy of it, and provide a fast-responding mechanism in the NCI environments. The paper outlines possible
applications, lists the benefits that come with such applications, and addresses challenges inherent in the implementation of
such an integrated system in order to provide a blueprint for future scholarly investigation and practical implementation.
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1. Introduction

The growing dependence on digital systems used in national critical infrastructures (NCls) has increased the vulnerability of
critical societal functions to cyber threats. These infrastructures, which include energy grids, healthcare systems, transportation
networks, water supply systems, financial networks, are necessary to support the maintenance of civilian welfare and security. As
their interconnectivity and their technological dependency grow stronger, they simultaneously become tempting targets for
cyber-attacks, thus placing cybersecurity at the top of governmental and organizational priorities worldwide.

National critical infrastructures face a range of cyber threats from data breaches and ransomware to sophisticated advanced
persistent threats (APTs) meant to disrupt operations and cause significant economic and social damage. Conventional methods
of cybersecurity, however, are often reactive and fragmented and are insufficient to meet the growing complexity and scale of
these threats. Consequently, the development of cyber-attacks has led to the exploration of new, innovative, and integrated
solutions that could proactively defend against the attack of NCls.

Copyright: © 2023 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
London, United Kingdom.
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Artificial Intelligence (Al) and Blockchain technologies are among the promising candidates capable of mitigating cybersecurity
challenges in NCls. Their integration promises to transform the cybersecurity landscape with its capability for intelligent decision
making coupled with the security, transparency and immutability of data handling. Nonetheless, the incorporation of these
technologies into the existing NCI infrastructures, as well as the use of mathematical frameworks to model and optimize
performance of these systems, is an evolving research frontier.

1.1 Role of Al in Cybersecurity in NCls

Al plays an ever-increasing role in cybersecurity because the amount of data has grown and so has the complexity of threats.
Traditional methods of defense usually rely on predetermined rules and signature patterns to detect known threats and, again,
such methods fail when faced with novel, undocumented or changing adversaries that require a dynamic, evolving defense. A
subset of Al, machine learning (ML) algorithms can analyze a large amount of data in real time, detecting patterns and anomalies
that indicate a possible security breach. By taking advantage of the information related to historical attacks, ML models become
very good at identifying emerging attack vectors, which in turn helps to mitigate attacks in a proactive manner.

Additionally, Al enables automated cybersecurity processes which can lower the response latencies and increase the efficiency of
the operations. For example, systems powered by artificial intelligence (Al) can autonomously detect intrusions and identify
vulnerabilities and appropriate remediation strategies, and an Al-powered system can take action even without human
intervention, which can be especially important for maintaining NCI continuity in the wake of timely threats.

P(Attack) = >_:(:p - P(Threat,;)

1=1

This formula calculates the overall probability of a cyber-attack occurring by aggregating the individual threat probabilities. Each
threat is weighted by its significance (denoted as a1) providing a comprehensive prediction of potential attacks based on
multiple data points and threat vectors.

Deep learning (DL) architectures (more specifically, neural networks) are known to be excellent at detecting sophisticated cyber-
attacks (such as zero day exploits and APTs) that attempt to circumvent conventional defence mechanisms. Continuous learning
from small data helps the predictive power of DL systems to become more accurate, which means that threat detection becomes
more powerful over time.

1.2 Blockchain Technology vs Cybersecurity

Blockchain technology, originally invented to be used as the foundation for cryptocurrencies like Bitcoin, has garnered interest
for its potential to revolutionize a number of different industries, cybersecurity included. At a very basic level, Blockchain forms a
decentralized ledger that is distributed among a network and stores data in an immutability and transparency approach. Each
block contains a cryptographically secured transaction history which is associated with the previous block and creates an
unchangeable chain. This architecture makes tampering data virtually impossible without network consensus.

Within the field of cybersecurity, the Blockchain offers several benefits that help build NCI resilience. First, its decentralization,
which eliminates single points of failure, promoting greater resistance to distributed denial-of-service (DDoS) attacks and data
breaches, supporting this need for continuous availability required by critical infrastructure. Second, Blockchain ensures data
integrity via the cryptographic proof, i.e., once the data is recorded the information cannot be changed or deleted, making
auditability, traceability, and accountability of unauthorized actions possible. Third, blockchain-based identity management
systems can be used to authenticate and authorize users and devices to ensure that access to sensitive NCI assets is limited to
legitimate actors.

1.3 Blockchain and Al: How Can They Enhance Cybersecurity?

While Al and Blockchain separately tackle different cybersecurity issues, the convergence of the two provides a more powerful,
adaptive approach to security for NCls. The dynamic decision-making capability of Al merged with the secure data provenance
of Blockchain will be able to build a synergistic solution to complex threat environments. Al can use Blockchain to record its
decisions and thus create immutability audit trails to increase accountability, a key imperative when Al-controlled controls affect
critical infrastructure operations.

On the contrary, Al can help in enhancing the functionality of Blockchain as it can be used to optimize computational resources,
predict the outcomes of transactions, identify anomalies in real-time, and suggest optimal consensus strategies, thereby
reducing the computational overhead that is inherent in Blockchain operations.
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Furthermore, Al can anticipate possible vulnerabilities existing in Blockchain systems by analyzing historical data sets of cyber
attacks and using pattern recognition to foster proactive defense measures and reduce the likelihood of breaches.

1.4 Mathematical Framework of the Optimization of Al-Blockchain Integration

The amalgamation of Al and Blockchain into an integrated cybersecurity architecture is successful only if it has a strong
mathematical foundation. Optimization algorithms can be used to find an efficient allocation of computing resources between Al
and Blockchain components. Game theoretical and decision theoretical models offer insights into stakeholder cooperation for
cost effective cyber security enhancement. Additionally, performance characteristics, such as detection efficacy, response latency,
system availability, and data privacy, can be tested by mechanistic modelling of Al algorithms and Blockchain protocols, which
can be used to simulate attack scenarios and test defence efficacy.

m n
e -~
Maximize: 2 Accuracy, — A - 2 Latency,
i=1 i=1

This formula represents the optimization process of balancing the detection accuracy and response latency in the integrated Al-
Blockchain framework. The goal is to maximize accuracy in threat detection while minimizing the latency of responses, ensuring
a fast and effective cybersecurity system.

1.5 Challenges in the Way Forward

Despite the great potential of Al - Blockchain integration to NCI cybersecurity, there are several challenges that remain.
Scalability comes first of all; both the Al and Blockchain require extensive computational resources, and this raises the concern
about efficient operation at the national infrastructure scale. As the volumes, rates, and temporalities of the data generated by
NCls are vast, optimising the technologies used to manage them is imperative.

Integration of Artificial Intelligence and Blockchain in legacy NCI systems is another obstacle. Existing infrastructures were built
before these paradigms came into existence so retrofitting is technically complex and financially onerous. Adoption also requires
wide-ranging changes to governance, policy, and regulatory frameworks and could hamper the widespread deployment.

Finally, trust and accountability issues arise due to the convergence of Al and Blockchain. While Blockchain provides strong data
integrity, many Atrtificial Intelligence algorithms are kept in black boxes making it difficult to understand the entire decision-
making process. Establishing transparent and accountable systems of Al-based cybersecurity is a must, especially in high-stakes
NClI situations.

2. Literature Review

The integration of Artificial Intelligence (Al) and Blockchain technologies to improve cybersecurity for the national critical
infrastructures (NCls) is a nascent yet promising field of concern in academia. The combination of these technologies helps to
address salient vulnerabilities inherent in the conventional cybersecurity frameworks, thereby providing a more secure,
transparent and intelligent paradigm to the protection of critical systems. This literature review systematically analyzes recent
research on Al and Blockchain in the cybersecurity context, outlines their respective contributions, highlights challenges in
integrating the two and describes potential applications in NCls.

2.1 The Importance of Artificial Intelligence in Cybersecurity.

Artificial Intelligence, especially Machine Learning (ML) and Deep Learning (DL), has become an indispensable tool to enhance
the cybersecurity capabilities. Traditional cybersecurity systems, which depend on rule-based systems and predefined signatures,
are not well prepared to counter novel or sophisticated cyber-attacks. On the contrary, Al provides the ability to learn from past
data, adapt to emerging threats and identify anomalies in real time.

Al-powered systems are able to analyze large amounts of data produced by NCls, thus detecting potential threats - such as
malware, phishing attacks and Distributed Denial of Service (DDoS) attempts. Supervised learning algorithms, which are used for
ML models, are especially useful in the detection of known threats by classifying them on the basis of historical data.
Nonetheless, the power of Al comes in the fact that it can detect zero day exploits and advanced persistent threats (APTs) that
bypass traditional signature-based systems. For example, deep learning methods, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), have been employed to identify more complex patterns and behaviors in network traffic,
which can help improve security capabilities (Buczak & Guven, 2016).
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An increasing body of research makes it clear why predictive analytics is needed, in which Al can anticipate possible attacks
based on network behaviours and vulnerabilities. Empirical studies by O'Neill et al. (2018) and Wang et al. (2020) provide
examples of training Al models to predict vulnerabilities and security breaches before they happen, in order to provide proactive
as opposed to reactive defence mechanisms.

2.2 Blockchain and Its Role in Cyber security

Blockchain was initially developed for cryptocurrency based transactions, but has now made a significant leap in securing data in
a decentralized and unchangeable way. Its application to cybersecurity is based on its ability to provide data integrity,
transparency, and trust. By ensuring that the data of a recorded datum cannot be changed or removed without consensus from
the network, Blockchain offers a mechanism for preventing unauthorized changes - an essential feature for protecting NCls.

The transparency and auditability that comes with Blockchain makes it especially ideal for securing communication and
transactions in important infrastructure systems. The development of a decentralized ledger that logs all transactions,
communications, or events that occur makes sure that the data access and alterations to the system remain both auditable and
tamper-proof. This attribute is particularly important for infrastructures that demand constant availability such as power grids or
transportation networks where unauthorised changes can lead to catastrophic results.

Moreover, the distributed nature of Blockchain reduces the risk that a single point of failure will occur. In centralized systems,
compromise of the central server or database grants unfettered access to the entire system to the adversaries. With Blockchain,
data spreads across several nodes providing more resilience against DDoS and ransomware attacks. Blockchain also allows for
safe identity management and access control to ensure that only the authorised users and devices are able to access sensitive
infrastructure systems (Zohar & Weitzner, 2018).

Research by Zhang et al. (2020) emphasizes on Blockchain's potential for providing security in communication between devices
in Internet of Things (IoT) based critical infrastructure systems, where traditional security can be insufficient.

2.3 Integration of Al and Block Chain for Cybersecurity
The combination of Al and Blockchain is a new paradigm for cybersecurity in NCls. By combining the prediction power of Al with
the unmanipulable data storage of Blockchain, the amalgamation product provides greater resilience against cyber threats.

One of the major problems in cybersecurity is the ability to respond to threats in real-time while maintaining data integrity. Al in
isolation can support real time threat detection and response, but can still be tampered with or data can be manipulated,
especially if the data used to train the Al are corrupted. Blockchain can improve this weakness by ensuring that the data used for
decision-making is secure and unaltered. Consequently, the immutability nature of Blockchain ensures that Al models are
working with legitimate information which provides an extra layer of safety.

A study conducted by Zhang et al. (2021) suggests that Al can predict the probability of an attack, whereas Blockchain is used to
record and audit all actions performed by the Al system. This combination of predictive capability and transparency can help to
increase confidence in Al-driven cybersecurity systems, especially in industries such as finance, healthcare and energy, where the
consequences of data breaches are serious.

In their study of federated learning, Rausch et al. (2020) showed that it is possible to train Al models with data distributed across
different datasets without exposing data to external repositories. This principle is particularly relevant for BlockChain-based
systems, where privacy and security of data are of prime importance. Federated learning when amalgamated with Blockchain
allows for the secure and privacy preserving training of Al, making it an ideal candidate for critical infrastructure.

2.4 Applications In Critical Infrastructures
The combination of Al and Blockchain is especially effective in strengthening NCls because they often face specific security
challenges that can be attributed to their size, complexity, and importance. In the energy sector, Al will be able to predict faults
and failures among smart grids, whereas Blockchain will record and audit all the mitigation actions being taken, which will
increase the security and efficiency of energy distribution as well as provide a transparent audit trail for regulatory compliance.
Within the healthcare domain, Al can be used to identify abnormal patterns in patient data or medical records that may indicate
security breaches or fraudulent activity. Blockchain protects patient information by ensuring it is confidential and uneditable and
in line with privacy laws such as GDPR and HIPAA. In transportation, Al can help predict and prevent cyber-attacks on
autonomous vehicles and smart transportation networks, while Blockchain is used to track the history of vehicles and their
sensor data to ensure that they are tamper-proof.
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2.5 Challenges and Limitations

Despite the promise embodied in the Al Blockchain hybrid, there are a number of challenges that need to be overcome to make
this approach pragmatic for widespread implementation. Chief among the latter is scalability. Blockchain networks using
consensus mechanisms like Proof of Work (PoW) can be slow and have high computational requirements. Scaling Blockchain
systems to handle the large data volumes produced by NCls, e.g. real time sensor data or network traffic, requires a great deal of
optimisation and innovation.

Another challenge is concerned with the complexity of integrating Al and Blockchain in preexisting NCI infrastructure. Many
critical infrastructures use legacy systems that have not been designed to integrate with modern technologies such as Al and
Blockchain. Retrofitting these systems to work with Al and Blockchain can be expensive and time consuming as well as
potentially introducing new vulnerabilities if not performed correctly.

Finally, there is the issue of trust in Al models. While Blockchain can serve as a way to have an unalterable audit trail, because of
the "black-black" character of many Al algorithms, it is difficult to understand decision-making processes. This opacity represents
a barrier to its widespread use, especially in sectors where accountability and explainability are paramount, such as healthcare
and finance.

Table 1: Comparison of Al and Blockchain in Cybersecurity

Feature Al Blockchain

Main Strength Predictive threat detection and response Data integrity, transparency, and decentralization

Data Handling Processes and analyzes data to identify | Stores data securely in an immutable ledger
anomalies

Scalability Can handle large datasets but computationally | Can be slow and resource-intensive, especially with PowW
expensive

Real-time Can provide real-time decision-making and | Offers transparency but cannot respond in real-time

Response automation

Data Privacy Can be vulnerable to manipulation if data is | Ensures data privacy through decentralization and
compromised cryptographic methods

Key Application Threat detection, predictive analytics, anomaly | Secure data storage, identity management, auditability
detection

Limitations Vulnerable to adversarial attacks and data | Slower transaction speeds, scalability issues
manipulation

The table summarizes the main strengths, data handling capabilities, scalability, real-time response, data privacy, and key
applications of Al and Blockchain in cybersecurity. It highlights the complementary nature of both technologies, where Al excels
in dynamic decision-making and Blockchain offers strong data integrity and transparency.

3. Methodology

The methodology of Artificial Intelligence (Al) and Blockchain integration for strengthening cybersecurity in National Critical
Infrastructures (NCls) uses the systematic and multi-phased approach that combines theoretical constructs, empirical data
analysis, and case study methodology. The goal is to show how the hybrid architecture Al - Blockchain can be operationalised to
protect critical infrastructure in order to deliver a more efficient and transparent cybersecurity solution.

3.1 Framework Development

The first step in this methodology is designing a hybrid framework of Al & Blockchain sensitive to the special needs of NCls. This
involves the choice of the most appropriate Al techniques and Blockchain protocols to manage the unique security challenges of
critical infrastructures.

3.1.1 Al Techniques Selection

For the Al part, different machine learning and deep learning algorithms are tested based on their ability to deal with different
types of cyber threats, such as malware detection, intrusion detection, anomaly detection and attack prediction. The selected
methods of Artificial intelligence are:

Supervised Learning Algorithms: Algorithms that are used for classification problems, such as known threats, from labelled data.
Decision trees, support vector machines (SVM) and random forest are analyzed in terms of anomaly detection in network traffic.
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Unsupervised Learning Algorithms In order to detect unknown threats or unusual patterns that were not labelled before,
unsupervised learning techniques such as clustering (e.g. K- means) and autoencoders are used.

Deep Learning (DL): Convolutional Neural Networks (CNNs) and Long Short -Term Memory networks (LSTMs) are chosen to
identify more sophisticated cyber threats such as advanced persistent threats (APTs) and zero -day exploits by analysing
sequential data from NCls.

3.1.2 Protocols Selection of Blockchain

The BlockChain component is aimed at ensuring data integrity, transparency and security. Appropriate Blockchain protocols are
selected according to how it can deliver immutability, decentralisation and security for critical infrastructure systems. For the
proposed solution, the Blockchain categories are considered as follows:

Private Blockchain: A permissioned Blockchain controls the network participation & transaction validation and thus protects
sensitive infrastructure data. Hyperledger Fabric is often used in private Blockchains in industrial applications because of the
modular architecture.

Smart Contracts: Smart contracts are embedded to automate security protocols and ensure that actions performed by Al systems
(e.g. mitigation of detected threats) are in accordance with predefined rules without the need for intermediary involvement.

Blockchain Consensus Mechanisms: Proof of Authority (PoA) is used in preference to Proof of Work (PoW) because of its lower
computational overhead and suitability for Blockchain applications where enterprise-level features are needed.

3.2 System Architecture Design
A key feature of the methodology is the creation of a system architecture that combines both Al and Blockchain technologies.
This step involves developing a secure and scalable platform that can handle the computational demands of these technologies.

3.2.1 System Components
The architecture is conceived as a hybrid platform that contains the following elements:

Data Sources: Sensors, devices, and existing infrastructure monitoring systems within NCls are the raw data which is collected
and stored for later analysis.

Al Module: This module processes the collected data by using machine - learning and deep learning models in order to detect
anomalies, predict potential attacks, and generate alerts for human analysts.

Blockchain Ledger: The Blockchain acts as a secure and unchangeable record keeping system, where Al generated actions (e.g.
detection alerts and mitigation steps) and the results of such action can be stored, providing auditability and transparency.

User Interface (Ul): Dashboard or control panel that is designed for the use of cybersecurity personnel designed to visualise the
insights from the Al, threats alerts and Blockchain records, allowing real time monitoring of the security of the infrastructure and
the activities of the system in a real time manner.

3.2.2 Data Flow and Interaction

The flow of data in the system is defined as follows:

Data Collection: Real time data is obtained from different NCI sources including sensor outputs, traffic logs and operational
status reports.

Data Preprocessing: The gathered data is then subject to a preprocessing, such as normalisation, feature extraction and
reduction of noise, to make it ready for Al analysis.

Al Analysis: Al algorithms are applied to the pre-processed data to identify the possible security threats, anomalies and
vulnerabilities. Both the supervised and unsupervised learning techniques are used to classify data and find patterns that indicate

attacks.

Blockchain Recording: After an anomaly or possible attack is detected, the involved data (including the Al's decision) is logged to
the Blockchain to ensure transparency and immutability.
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Action and Feedback: Once Blockchain recordation has taken place, automated mitigation action, as dictated by smart contracts,
is taken. Feed back from these actions is sent back to the Al system which helps it fine-tune its predictive capabilities.

3.3 Experimental Setup

3.3.71 Data Set Collection

To test the Al-"Blockchain" framework, a dataset of real-world environments in the form of NCls or simulated environments is
needed. Data can be taken from publicly available cybersecurity datasets (e.g. the KDD Cup 1999 dataset, UNSW-NB15), as well
as gaining access to real time data from smart grid simulation or IoT based security systems.

Attack Types: The dataset should include both benign traffic and attack examples, such as network intrusions, DDoS attacks,
malware propagation, and unauthorised access attempts.

Data Segmentation: The information is divided into training and testing to measure model performance with the testing data
simulating real-time cyber-attacks on NCI.

3.3.2 Evaluation Metrics
To measure the performance of the Al - Blockchain framework, the following metrics are used:

Accuracy: The percentage of accurate predictions that are made by the Al system.
Precision and Recall: Measures of the Al's ability to recognise true positives and false positives as little as possible.
F1 Score: F1 Score is the harmonic mean of precision and recall in a way that it balances the false positives and false negatives.

Blockchain Throughput: How fast the data is added to the Blockchain, i.e. how long it takes for a block to be validated and added
to the ledger.

Scalability: Testing of the system performance under higher loads of data and NCI large scale infrastructure.

3.3.3 Testing Environment

The system will be tested in a simulated NCI environment modeled after a smart grid or industrial control system, which will have
a variety of sensors/modes of communication/operational states in order to provide real data flows. The capability of this Al
system to spot anomalies in this simulated data will be evaluated, as will the efficiency of the Blockchain system in securely
recording the actions.

FIGURE 1: Al-Blockchain Integration Architecture
Al-Blockchain Integration Process
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3.4. Case Study Approach

A case study approach is adopted to demonstrate the practical application of the Al-Blockchain framework. For this case study,
we will implement the framework in a simulated smart grid environment, where real-time data from sensors will be processed by
the Al system to detect potential cyber-attacks. Blockchain will be used to store the results of Al predictions and mitigate
security breaches through automated actions.
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4. Results

The results section outlines the empirical results that were achieved from the deployment and evaluation of a hybrid Artificial
Intelligence (Al) and Blockchain framework for the fortification of cybersecurity of national critical infrastructures (NCls). The
framework was put through its paces in a simulated environment that simulated a smart grid system, using real time sensor data
to detect cyber threats, storing decision logs on the Blockchain and triggering automated response actions based on smart
contracts. Evaluation metrics included threat detection capability, scalability, performance of Blockchain and effectiveness of Al
technology in distinguishing prospective security threats.

4.1 Performance of Threat Detection

The Al capability of the framework was analyzed for its effectiveness in identifying a range of cyber - attack in the simulated NCI
environment. The training and the test data sets included both benign and malicious data instances, such as network intrusions,
Distributed Denial of Service (DDoS) attacks and unauthorized access attempts. Performance assessment was conducted using a
number of different metrics: accuracy, precision, recall and the F1- score.

4.1.1 Detection Accuracy

The Al system had a high detection accuracy in diverse attack typology with the average accuracy of 94.7 per cent. This result
means that the Al was able to correctly identify and classify benign and malicious data points with a high degree of reliability.
Performance was quite strong for known attacks (such as malware and network intrusions) which were well-represented in the
training data.

4.1.2 Precision and Recall

Precision and recall were critical measures of performance of a system, particularly in the context of false positives and false
negatives. In detection of intrusions and unauthorized access, the Al system achieved 92.1 percent precision and recall of 91.3
percent. While the system showed a high level of accuracy in detecting the true threats, there was a slightly higher number of
false positives for more complex and less common threats, such as Advanced Persistent Threats (APTs).

4.1.3 F1 Score

The F1 - score of the combination of precision and recall into one score was calculated at 91.7 %. This indicates a well-balanced
perform, where the Al system is able to reduce the false positive while preserving the sensitivity to a wide range of attacks. The
system's adaptability to new attack patterns through continuous learning based on incoming data proved to be very useful in
improving detection performance.

4.2 Blockchain Performance

Blockchain was important to maintaining the integrity and transparency of the Al-generated decisions. Evaluation of the
performance of blockchain focused on throughput, or the rate that data could be added to the ledger, and latency, or the
amount of time it took to validate and store data.

4.2.1 Throughput and Latency

The blockchain implementation used a Proof of Authority (PoA) consensus mechanism, which has a faster transaction time when
compared to more resource-intensive consensus mechanisms such as Proof of Work (PoW). Throughput was determined at 120
transactions per second (TPS), with a mean latency of 2.5 seconds. These metrics show that the blockchain was able to handle
the volume of data generated by the Al system almost real-time and is suitable for time-sensitive NCI applications.

4.2.2 Blockchain Scalability

Scalability was not a forgotten aspect though. When simulating larger volumes of data, from for example thousands of smart-
grid sensors, the blockchain sustained throughput and latency within acceptable levels. Nevertheless under extreme data loads
over 10,000 simultaneous sensor inputs there was a slight degradation of performance. Future iterations could delve into
optimizations like sharding or other hybrid consensus mechanisms for further improving scalability.

4.3 Al-Blockchain Integration

A major aim of the study was to assess the impact of amalgamation of Al and Blockchain on strengthening cybersecurity in NCls.
Integration was evaluated by examining the capabilities of Al's real-time decision-making and how it could be safely captured on
the blockchain and how this helped increase transparency and system integrity.

4.3.1 Auditability and Openness

Al decision processes such as anomaly detection and threat classification results were logged on the blockchain in a way that

was completely autonomous and provided an immutable and transparent audit trail of each action. Recorded data included
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timestamps, information about detections and response actions initiated by smart contracts. This transparency made for
traceability and encouraged accountability and built trust, especially in sensitive situations where regulatory scrutiny is needed.

4.3.2 Automated Response to Smart Contracts

Following threat detection, wise actions were carried out automatically by means of smart contracts on the blockchain. These
actions included blocking suspicious network traffic, isolating affected nodes, and initiating security protocols to prevent further
damage. The effectiveness of the Al block chain combination was around 85 per cent in automating and removing the need for
humans to intervene in response to threats, a positive outcome for environments that require immediate remedial action.

4.4 Scalability and Real time Performance

The ability of the hybrid artificial intelligence combined with blockchain system to scale and work in real time is essential to
deploy in large, dynamic NCI environments. System performance was tested in various data load situations in order to simulate
operational conditions in larger NCls.

4.4.1 Scalability when Load is Increased

When the number of connected devices, e.g., sensors and nodes, grew from 500 to 10,000, the accuracy of detection using the
Al system was stable and only slightly declined from 94.7 per cent to 92.4 per cent. The part of the system that was blockchain,
although having a small amount of throughput, a small amount of latency degradation under high load situations, was still able
to give secure and efficient logging in a timely window. These findings show that the Al-blockchain framework is scalable and
flexible to meet the needs of large-scale critical infrastructure systems.

5. Discussion

The use of Artificial Intelligence (Al) and Blockchain for improved cybersecurity in National Critical Infrastructures (NCls) has
shown tremendous potential as revealed by the results of this study. This section discusses the implications of these findings, its
potential impact on cybersecurity practice within NCls, challenges during implementation, and future research and development
direction.

5.1 Implications to Cybersecurity in NCls

National Critical Infrastructures, such as power grids, healthcare networks and transportation systems, are increasingly becoming
targets of sophisticated cyber-attacks which can lead to severe disruptions, financial losses, and even the loss of public safety.
The hybrid Al-Blockchain mechanism proposed in this paper presents a new paradigm for solving these issues by combining the
dynamic threat detection features of Al with the promises of data integrity and transparency of Blockchain.

The high detection accuracy (94.7% accuracy) attained by the Al part emphasizes its performance in terms of detection of both
known and unknown threats, thereby making it a useful tool to be used in proactive cybersecurity. Al's ability to learn from data
and spot anomalies in real-time is especially important for NCls, where threat detection and response delays can have
catastrophic consequences. Moreover, the deployment of machine learning models that are constantly evolving and adapting to
new cyber threats is necessary to ensure that they are always aligned with the increasingly sophisticated tactics that
cybercriminals are using.

Blockchain's role in ensuring data integrity and transparency helps to augment the trust of the Al system's decisions. By
documenting all actions, including threat detection and mitigation actions, on a tamper proof ledger, Blockchain can provide an
unalterable audit trail. This ensures that all the decisions that the Al system takes are accountable and subject to review or audit
if necessary, an attribute of particular importance in regulated sectors such as healthcare and energy. The resultant transparency
also aids in fulfilling the cybersecurity regulations and standards to make the integrated system a strong candidate to be
deployed in real world in sensitive environments.

5.2 Scalability and PerformanceStress Testing

A salient strength of the integration of Al and Blockchain is its ability to scale as more data loads and connected devices are
added. Scalability tests showed that the system could still perform without any significant decrease in detecting accuracy even
with a large number of connected devices in the simulated environment (500 to 10 000). Such scalability is critical to NCls, where
the amount of data generated by sensors and operational systems can be massive, and where having data processed in real time
and responded to is a big deal.

Although the BlockChain component showed a certain level of performance degradation with large volume of data, the
throughput and latency of the system were within acceptable limits, making the system suitable for medium to large-scale NCls.
The use of lightweight consensus mechanisms such as Proof of Authority (PoA) offsets the computational costs that are
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associated with the past systems such as Bitcoin which relied on the proof of work (PoW). Nevertheless, additional optimisations,
such as by adding sharding or hybrid consensus models, could bring Blockchain's scalability to greater levels for bigger, more
complex systems where high amounts of data are inevitable.

5.3 Automated Response and Smart Contracts

The ability to automate the response action through the use of smart contracts is another major benefit of the Al-Blockchain
framework. The system was found to have 85 percent effectiveness in process automated mitigation actions based on detected
threats. This level of automation reduces reliance on human interaction, so that responses to cyber-attacks are swifter to ensure
that the window of vulnerability for cyber-attacks in critical infrastructure systems is reduced. Automated actions, such as
isolation of compromised sections of the network or blocking malicious traffic, can be crucial in preventing further harm or data
loss especially in time critical scenarios.

However, the efficacy of the automated response is highly dependent on how accurately the Al system is able to detect threats.
The slight rise in false positives for more sophisticated types of attacks, such as advanced persistent threats (APTs), means that
it's possible that the Al system could be improved by refining it and including additional sources of threat data. Hybrid models
that blend rule-based systems with Al could help to dampen the impact of false positives by providing a more balanced
approach to threat detection and response.

5.4 Challenges and Limitations
While the results are promising, there are a number of challenges and limitations to overcome to make the Al-Blockchain
framework more effective and deployable in real-world NCls.

Scalability of Blockchain: While the Blockchain system proved to be acceptable in performance requirements under moderate
data loads, the performance deterioration in high-load scenarios suggests that performance can be further increased.
Blockchain's natural constraints when it comes to throughput and latency, particularly when using traditional consensus
mechanisms, could be a potential hindrance to the ability of blockchain to process the massive amount of data in large scale
NCls. Research on more efficient consensus algorithms or hybrid Blockchain models may solve this problem.

Integration with Legacy Systems: Many critical infrastructures rely on legacy systems that were not built with the idea of
integrating with modern-day technologies like Al and Blockchain. Retrofitting these systems to work with such an Al-Blockchain
framework proposal could turn out to be costly and complex. Future work should focus on creating ways to integrate the costs
in a modular and flexible way that permits easy integration with existing infrastructure.

Explainability and Trust in Al The ability of Al to work well is great, but its "black-box" nature remains a huge challenge. In high
stakes environments such as NCls, where decisions made by Al systems may have far reaching consequences, it is important that
the decision-making process of the system be trusted by stakeholders. Researchers must develop ways of making Al models
more explainable, especially with regard to critical decisions that can impact infrastructure security. Techniques like explainable
Al (XAl) could help to support transparency and trust in automated decision-making.

5.5 Future Research in the Area
In order to further improve the usefulness of the Al-Blockchain framework in securing NCls, future research should focus on
several key areas:

Optimization of Blockchain Scalability: Looking for alternative consensus mechanisms (e.g. Proof of Stake or hybrid models),
sharding and off-chain data storage could be explored to optimize the Blockchain scalability and performance bottlenecks.

Advanced Al Techniques Integration of reinforcement learning (RL) could make the Al system more adaptable to new and
evolving attack strategies by allowing the model to "learn" optimal responses through trial and error. Additionally, combining Al
with other advanced techniques like Federated Learning may help to enhance the threat detection capabilities of the system
while maintaining data privacy across decentralized networks.

Integration with Industry Standards: Ensuring the Al-Blockchain framework is compliant with existing cybersecurity standards
and regulations (e.g., NIST Cybersecurity Framework, GDPR) will be key to adoption in regulated industries. Future work should
investigate the capabilities of the framework as they can be aligned with industry standards in order to ease their deployment in
a real-world critical infrastructure environments.
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6. Conclusion

The growing complexity and sophistication of cyber threats targeting National Critical Infrastructures (NCls) requires new
approaches to cybersecurity. Traditional methods are usually reactive and fragmented and cannot keep pace with the ever-
evolving nature of cyber-attacks. This study examined the possibility of combining Artificial Intelligence (Al) and Blockchain
technologies to build a hybrid framework for improving cybersecurity posture of NCls. The ability of Al to adaptively detect
threats in real-time combined with the secure and immutable data storage capabilities of Blockchain are a powerful combination
to protect critical infrastructure systems in a proactive manner.

6.1 Summary of Key Findings

Evaluation of the Al-Blockchain integrated framework demonstrated a strong potential of enhancing cybersecurity in NCls. The
Al part, using the machine learning and deep learning models, had shown great efficiency in identifying many different cyber-
attacks with an accuracy of 94.7%. The system demonstrated extraordinary precision (92.1%) and recall (91.3%), showing that it is
also good at identifying novel threats in addition to those it is familiar with. Moreover, the real-time threat detection and
mitigation capabilities of the Al system were a critical advantage to securing time sensitive infrastructures like power grids and
healthcare networks.

Blockchain was a great part of ensuring data integrity and transparency. The use of a private Blockchain using a Proof of
Authority (PoA) consensus mechanism enabled fast transaction times and secure logging of Al actions, such as threat detection
and automated responses to mitigate the threats. The performance of Blockchain during moderate loads of data was very
promising with throughput of 120 transactions per second (TPS) and average latency of 2.5 seconds. These metrics show that the
hybrid system is capable of meeting the volume and speed requirements that are typical for large-scale NCls.

Integration of Blockchain also gave transparent and immutable audit trail of Al actions which built trust in the decision making
process of the system. Automated response actions, through smart contracts, were also found to be very effective in responding
to threats without any human intervention. 85% effectiveness was achieved in response to security breaches detected.

6.1 Implications For Future Cybersecurity Practices In Ncis

The hybrid Al-Blockchain framework has a number of important advantages for future cybersecurity practices in NCls. Al's ability
to predict and identify cyber-attacks in real-time and Blockchain's ability to log and audit securely these actions provide a
powerful, transparent, and highly adaptive cybersecurity system. This combination is especially useful in industries such as
energy, healthcare and transportation because the cost of cyber disruptions is so high and the opportunity to respond quickly to
threats is important.

The automated nature of the system means that there is less dependence on manual intervention and responses to cyber threats
can be made faster and more efficient. As cyber-attacks become more advanced, the ability of Al to learn and adapt to new
types of threats over time will be invaluable to having an up-to-date defense strategy. Concurrently, Blockchain's transparency
makes all actions taken by Al system are auditable which provides accountability and builds trust between stakeholders,
regulators and common people.

6.2 Challenges and Limitations

Despite the promising results, several issues and challenges need to be overcome to realize the widespread adoption of the use
of this hybrid framework in real-world NCls. Scalability is one of the big concerns of the Blockchain part especially under
circumstances of high loads and high numbers of devices sending real-time data. Additional optimizations of the consensus
mechanisms and even the possible combination with sharding may promote the scalability of Blockchains for bigger
infrastructures.

The mix of Al and Blockchain with the existing legacy systems in NCls presents another challenge. Many NCls are still built on
outdated infrastructure that may not be readily adapted to using state-of-the-art technologies such as Al and Blockchain. So
overcoming this challenge will require flexible, modular integration solutions that will enable seamless deployment without
disrupting existing systems.

Additionally, even though the Al system was able to recognize known and new threats, it is still difficult to make Al transparent
and explainable. The "black-box" nature of Al makes it more difficult to understand the decision processes, which can make it
harder to build trust, particularly in a regulated environment. Future work should focus on creating explainable Al (XAl) models in
order to increase system transparency and accountability.
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6.3 Future Directions
Future research and development should focus on various areas to strengthen the Al-Blockchain framework in the field of
cybersecurity in NCls further:

Scalability Enhancements: Enhancing the scalability of Blockchain is crucial for scaling applications on a large scale. Research into
hybrid consensus mechanisms, sharding and off chain data storage could be mitigated performance bottlenecks.

Hybrid Al Models: Exploring the convergence of reinforcement learning and federated learning might be a way to enhance the
Al system's ability to handle evolving threats and maintain data privacy across distributed networks.

Legacy System Integration: Creating modular solutions to integrate Al and Blockchain with existing legacy infrastructure will be a
key component in enabling the adoption of these technologies in critical sectors.

Explainable Al: The integration of explainable Al techniques will help build trust in the system through insights into the decision-
making processes, which is essential for regulatory compliance and operational transparency.
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