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| ABSTRACT 

This research paper introduces a mathematical model and control framework for coordinating multiple drones (a swarm) using 

a Proportional–Derivative (PD) control approach grounded in graph theory. Each drone functions as an independent agent, 

communicating only with its nearby neighbors. This local interaction creates a decentralized and scalable system that eliminates 

the need for a central controller. The inter-drone connectivity and interactions are represented through the Laplacian matrix, 

while eigenvalue analysis helps in designing the control gains to ensure smooth and stable motion.The model is formulated using 

Newton’s equations of motion, expressed through differential equations that describe each drone’s dynamic behavior. The 

proposed approach is tested on a five-drone ring formation, demonstrating that the drones can maintain formation, avoid 

collisions, and reach the target position with stable convergence. 
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INTRODUCTION 

In the field of aerial robotics, coordinated drone swarms have emerged as a powerful solution for diverse applications, including 

precision agriculture, environmental mapping, surveillance, disaster relief, and search-and-rescue missions. Working collectively, 

drones can cover wide regions more efficiently, complete multiple tasks simultaneously, and remain operational even if one or 

more units fail. 

Despite these advantages, effective swarm coordination poses several challenges. The drones must: 

● Sustain proper spacing within the formation, 

● Move together toward a common destination, 

● Prevent collisions and maintain stability, and 

● Operate without depending heavily on a centralized control system. 

 

This research develops a mathematical and control-based framework in which each drone acts independently while responding 

to information from nearby drones. The model integrates graph theory to represent communication links within the swarm and 

employs Proportional–Derivative (PD) control to manage motion dynamics, enabling stable and synchronized group movement. 
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System Description 

Each drone is modeled as a point-mass system that follows Newton’s second law of motion: 

 

 

 

 

Let x denote the position of each drone 

Velocity = v =x’ Acceleration= a =x’’ 

As shown in the figure, 

no. of propellers = 4 

uplift produced by all 4 propellers : F1,F2 ,F3 ,F4 Total uplift U = F1+F2 +F3 +F4 

As per the force body diagram, 

Total force is given by the expression: 

 

𝐹 = 𝑈 + 𝑚𝑔 

, where g = - 9.8 m/s2 

 

𝑚𝑥'' = 𝑈 + 𝑚𝑔 

 

The upthrust generated by the drone’s propellers can be expressed as a second-order differential equation, derived from 

Newton’s second law of motion. 

 

 

 

Proportional Derivative Controller 

The Proportional–Derivative (PD) control law is one of the fundamental feedback control mechanisms used in engineering 

systems, particularly in robotics and aerial vehicle dynamics such as drones. It combines the advantages of both proportional and 

https://www.codecogs.com/eqnedit.php?latex=/frac{d^2x}{dt^2} %3D /frac{U}{m} %2B g&0
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derivative actions to achieve accurate, stable, and responsive system behavior. 

 

 

where 

● Upthrust , u(t) is the control input, 

 

● e(t)=xd(t)−x(t) is the tracking error between the desired state and the actual state, 

 

● Kp is the proportional gain, which determines the response to the instantaneous 

error, and 

 

● Kdis the derivative gain, which provides a damping effect by responding to the rate of change of the error. 

 

The proportional term ensures that the control effort is directly related to the magnitude of the position or attitude error, driving 

the system toward its reference trajectory. However, high proportional gains can induce oscillations or overshoot. The derivative 

term mitigates this effect by introducing a damping force proportional to the velocity of the error, thereby improving the system’s 

transient response and stability. 

Output ∝ error + d(error)/dt 

This is the basic principle of a PD controller:The control output (the correction signal sent to the system) depends on both: 

● The present error, and 

● The rate of change of the error (how fast the error is changing). 

 

 

 

 

 

Here, two gain constants are introduced: 

● Kp: Proportional gain – determines how strongly the controller reacts to the present error. 

● Kd: Derivative gain – adds damping, reducing oscillations and responding to sudden error changes. 

 

Application in Drone Dynamics 

 

In drone control, the PD law is particularly effective for stabilizing attitude, altitude, and position. For a single-axis motion, the 

drone dynamics can be simplified as: 

 

 

 

Applying the PD controller to this system gives: 

https://www.codecogs.com/eqnedit.php?latex=u(t) %3D K_p e(t) %2B K_d /frac{de(t)}{dt}&0
https://www.codecogs.com/eqnedit.php?latex=u(t) %3D K_p e(t) %2B K_d /frac{d e(t)}{dt}&0
https://www.codecogs.com/eqnedit.php?latex=u(t) %3D K_p (x_r - x_i) %2B K_d (/dot{v})&0
https://www.codecogs.com/eqnedit.php?latex=m/ddot{x} %3D U - mg&0
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Substituting this into the dynamic equation yields: 

 

 

 

 

This shows that the control input compensates for gravity while simultaneously ensuring that the position error and its derivative 

are minimized over time. The resulting closed-loop system exhibits improved stability, faster settling time, and reduced 

overshoot compared to a simple proportional controller. 

 

 

Graph Theory Representation 

To describe the communication and coordination among drones, the swarm can be modeled as a graph 

G=(V,E)where 

● V represents the set of drones (nodes), and 

● E represents the set of communication links (edges) between drones. 

 

Each node in the graph corresponds to an individual drone, while an edge between two nodes indicates a bidirectional 

communication link between those drones. 

 

https://www.codecogs.com/eqnedit.php?latex=U %3D K_p e(t) %2B K_d /frac{d e(t)}{dt} %2B mg&0
https://www.codecogs.com/eqnedit.php?latex=m/ddot{x} %3D K_p e(t) %2B K_d /frac{d e(t)}{dt}&0
https://www.codecogs.com/eqnedit.php?latex=R(s) /; /xrightarrow{/; - /;} /; E(s) /; /xrightarrow{/;(K_p %2B K_d s)/;} /; U(s) /; /xrightarrow{/;/frac{U(s)}{E(s)}/;} /; /text{Output}&0
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Adjacency Matrix 

 

Degree Matrix (D): 

 

 

Laplacian Matrix (L): 
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Modal decoupling and gain design 

 

 

 

To ensure that the drones converge at the target position (10, 10), appropriate adjustments are introduced in the propeller control 

equation. These manipulations regulate the thrust generated by each rotor, allowing the drones to achieve stable and coordinated 
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convergence toward the desired point. 

 

 

 

 

 

Assume initial relative velocities 
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Compute each term 

 

 

 

Final Calculations for all the five drones 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drones 1 and 2 require higher acceleration since they are positioned farthest from the target point (10, 10). In contrast, Drones 3, 

4, and 5 are relatively closer, resulting in smaller acceleration demands. The damping term acts to reduce the thrust along the 
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direction of motion, which explains the slightly lower control values observed compared to the earlier stage. As the drones’ 

velocities increase, the magnitude of damping term correspondingly grows, providing an automatic braking effect that stabilizes 

motion and enables a smooth convergence toward the target, ensuring a controlled and steady landing. 

Machine learning enhances drone swarm coordination by making control adaptive and intelligent. Traditional PD control uses 

fixed gains, but ML can dynamically tune Kp and Kd based on flight conditions using reinforcement learning. Graph Neural 

Networks allow drones to adjust communication links in real time, improving stability even if one drone fails. Predictive models 

like LSTMs can anticipate motion, reducing collisions and delays. Reinforcement learning further optimizes energy use by learning 

efficient thrust patterns. Overall, ML enables swarms to self-learn, adapt, and coordinate smoothly under disturbances, ensuring 

faster, safer, and more energy-efficient convergence to the target point. 

 

Physical Interpretation 

 

 

 

 

Simulation Results 

● All drones move in coordination and converge smoothly toward the target(10,10). 

● The convergence time in simulation is 2 seconds under ideal dynamics, and around 4–6 seconds in realistic 

physical environments. 

 

● The PD control prevents oscillations and ensures smooth velocity profiles. 

 

● Increasing Kp speeds convergence but may cause overshoot. 

 

● Increasing Kd smooths movement but slows convergence. 

Discussion 

● The Laplacian matrix LLL encodes how communication affects formation stability. 

 

● Higher algebraic connectivity λ2\lambda_2λ2 results in faster convergence. 

 

● The model is scalable — adding drones simply enlarges LLL. 

 

● Machine learning or reinforcement learning can be integrated to tune Kp and Kd adaptively for changing 

environments. 
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Conclusion 

This study presented a mathematically sound and practically feasible method for drone swarm coordination using PD control 

and graph theory. 

 

The approach ensures: 

 

● Stable formation maintenance, 

● Collision avoidance, 

● Decentralized control (no central node), 

● Smooth and synchronized convergence to the target. 

 

The framework can be used in surveillance, environmental mapping, and coordinated aerial delivery systems. Future work includes 

adaptive control and real-time optimization using machine learning. 
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