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| ABSTRACT

This research paper introduces a mathematical model and control framework for coordinating multiple drones (a swarm) using
a Proportional-Derivative (PD) control approach grounded in graph theory. Each drone functions as an independent agent,
communicating only with its nearby neighbors. This local interaction creates a decentralized and scalable system that eliminates
the need for a central controller. The inter-drone connectivity and interactions are represented through the Laplacian matrix,
while eigenvalue analysis helps in designing the control gains to ensure smooth and stable motion.The model is formulated using
Newton’s equations of motion, expressed through differential equations that describe each drone’s dynamic behavior. The
proposed approach is tested on a five-drone ring formation, demonstrating that the drones can maintain formation, avoid
collisions, and reach the target position with stable convergence.
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INTRODUCTION

In the field of aerial robotics, coordinated drone swarms have emerged as a powerful solution for diverse applications, including
precision agriculture, environmental mapping, surveillance, disaster relief, and search-and-rescue missions. Working collectively,
drones can cover wide regions more efficiently, complete multiple tasks simultaneously, and remain operational even if one or
more units fail.

Despite these advantages, effective swarm coordination poses several challenges. The drones must:
e  Sustain proper spacing within the formation,

® Move together toward a common destination,
e Prevent collisions and maintain stability, and
® Operate without depending heavily on a centralized control system.
This research develops a mathematical and control-based framework in which each drone acts independently while responding

to information from nearby drones. The model integrates graph theory to represent communication links within the swarm and
employs Proportional-Derivative (PD) control to manage motion dynamics, enabling stable and synchronized group movement.

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
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System Description

Each drone is modeled as a point-mass system that follows Newton’s second law of motion:

mg

World Frame

Let x denote the position of each drone

Velocity = v =x’ Acceleration=a =x"
As shown in the figure,

no. of propellers = 4

uplift produced by all 4 propellers : F',F? ,F3,F* Total uplift U = F'+F2 +F3 +F*
As per the force body diagram,

Total force is given by the expression:
F =U+ mg
, where g = - 9.8 m/s?

mx" = U + mg

The upthrust generated by the drone’s propellers can be expressed as a second-order differential equation, derived from
Newton's second law of motion.

Proportional Derivative Controller

The Proportional-Derivative (PD) control law is one of the fundamental feedback control mechanisms used in engineering
systems, particularly in robotics and aerial vehicle dynamics such as drones. It combines the advantages of both proportional and
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derivative actions to achieve accurate, stable, and responsive system behavior.

delt)
ot

ult) = h.‘ur_(” + K,

where
e Upthrust, u(t) is the control input,
® e(t)=xd(t)-x(t) is the tracking error between the desired state and the actual state,

e Kp is the proportional gain, which determines the  response to theinstantaneous
error, and

e Kdis the derivative gain, which provides a damping effect by responding to the rate of change of the error.
The proportional term ensures that the control effort is directly related to the magnitude of the position or attitude error, driving
the system toward its reference trajectory. However, high proportional gains can induce oscillations or overshoot. The derivative
term mitigates this effect by introducing a damping force proportional to the velocity of the error, thereby improving the system'’s
transient response and stability.
Output o error + d(error)/dt

This is the basic principle of a PD controller:The control output (the correction signal sent to the system) depends on both:

e The presenterror, and
e The rate of change of the error (how fast the error is changing).

de(t)
dt

u(t) = Kpe(t) + Ky

u(t) = Ky(r, — ;) + Kg(v)
Here, two gain constants are introduced:

e Kp: Proportional gain — determines how strongly the controller reacts to the present error.

e  Kd: Derivative gain — adds damping, reducing oscillations and responding to sudden error changes.
Application in Drone Dynamics

In drone control, the PD law is particularly effective for stabilizing attitude, altitude, and position. For a single-axis motion, the
drone dynamics can be simplified as:

mi = U —myg

Applying the PD controller to this system gives:
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de(t)
U= Kelt)+ K;— + m

Substituting this into the dynamic equation yields:

o de(t]
mi = K,elt) + fxd?

This shows that the control input compensates for gravity while simultaneously ensuring that the position error and its derivative
are minimized over time. The resulting closed-loop system exhibits improved stability, faster settling time, and reduced
overshoot compared to a simple proportional controller.

L[5

L R pHR e
—_—

R(s) = E(s)

[7(s) Ll Output

U(s)
R(s) —>®—> (Kp+ks) E(s), Output

>

Graph Theory Representation
To describe the communication and coordination among drones, the swarm can be modeled as a graph
G=(V,E)where

e Vrepresents the set of drones (nodes), and

® Erepresents the set of communication links (edges) between drones.

Each node in the graph corresponds to an individual drone, while an edge between two nodes indicates a bidirectional
communication link between those drones.
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5-Node Ring Graph (Drone Swarm Topology)

Adjacency Matrix

.
|
[ e i T
= 0 =D e
= = D = D
[ e T e s N o
= =D D

Degree Matrix (D):

D = diag(2,2,2,2,2)

Laplacian Matrix (L):

L=D-A—=|0 -1 2 -1 0

Page | 5



Mathematical Modeling and Control of Drone Swarm Coordination Using PD Approach

Eigenvalues (5-cycle):

numerically:

{1, A9, Ag, Ag, A5} = {0, 1.381966, 1.381966, 3.618034, 3.618034}.
Thus algebraic connectivity As ~ 1.381966. (One zero eigenvalue — graph connected.)
Modal decoupling and gain design

Modal Dynamics

Transforming the system using Laplacian eigenvectors V'
p=Vz =z + Kghpzp + Kp)u;;zk =3
Compare with the standard second-order model:

E 4 2wpt 4+ wiz =0

Then:
2
w 2Cwy,
K,—*, K;—
Py ¢ Ao
Design for Desired Performance
Let:
o Settlingtime T, =2+
e Damping ratio { — 1 (critically damped)
4
* Wn= g < 2
Then:
4 4
K,=——— =289 g — —————— — 2.89
P 1.381966 T 1381966

These gains ensure all drones converge smoothly.

To ensure that the drones converge at the target position (10, 10), appropriate adjustments are introduced in the propeller control
equation. These manipulations regulate the thrust generated by each rotor, allowing the drones to achieve stable and coordinated
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convergence toward the desired point.
u; = —Kpe; — Ki€; — ka(pi — Pyoal)

Target |

10 +

D5 t. e D3|

D! D2

Initial Drone Positions:
P1 = (an)v P2 = (2:0)? P3 = (37 1)1 Pgs = (17 1): Ps — (01 1)

Target Position:

Formation Errors:

Calculated using E = (L ® I,)P:

e = (—2, -1)

ez = (1,—1)

€3 = (3a l)

€4 = (_1’0)

€5 — (—1, 1)

Assume initial relative velocities
Crone £ (% y) 7
1 (0.6, 0.4)

-y f M7 M Y
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Compute each term

U = — pe,- gt I{d&,' =

Break into three parts for each drone:

Term Formula

Term 1 —Kplfi

Term 2 —Ké;

Term 3 —ka(Pi — Pyoat)

Final Calculations for all the five drones

Drone _eri — K ¢€;
1 (3.70, 1.85) (-1.32, -0.88)
2 (-1.85, 1.85) (0.66, —0.44)
3 (-5.55, —1.85) (-1.10, —1.54)
4 (1.85, 0) (0.44, 0.22)
5 (1.85, —1.85) (-0.66, 1.10)

ka (pi = pgoal)

Description

Proportional correction (position spring)
Damping term (velocity feedback)

Pull toward goal

Pgoal — Pi u; (m/s?)
(10, 10) (12.38, 10.97)
(8. 10) (6.81, 11.41)

(7.9 (0.35, 5.61)
9.9 (11.29, 9.22)
(10, 9) (11.19, 8.25)

Drones 1 and 2 require higher acceleration since they are positioned farthest from the target point (10, 10). In contrast, Drones 3,
4, and 5 are relatively closer, resulting in smaller acceleration demands. The damping term acts to reduce the thrust along the

Page | 8



JMSS 6(5): 01-10

direction of motion, which explains the slightly lower control values observed compared to the earlier stage. As the drones’
velocities increase, the magnitude of damping term correspondingly grows, providing an automatic braking effect that stabilizes
motion and enables a smooth convergence toward the target, ensuring a controlled and steady landing.

Machine learning enhances drone swarm coordination by making control adaptive and intelligent. Traditional PD control uses
fixed gains, but ML can dynamically tune Kp and Kd based on flight conditions using reinforcement learning. Graph Neural
Networks allow drones to adjust communication links in real time, improving stability even if one drone fails. Predictive models
like LSTMs can anticipate motion, reducing collisions and delays. Reinforcement learning further optimizes energy use by learning
efficient thrust patterns. Overall, ML enables swarms to self-learn, adapt, and coordinate smoothly under disturbances, ensuring
faster, safer, and more energy-efficient convergence to the target point.

Physical Interpretation

Term Role Effect if too small Effect if too large

K, Pulls drones toward equilibrium (like Slow convergence Jerky, oscillatory motion
spring)

Ky Damps velocity, smooths motion Oscillation Sluggish movement

ky Pulls entire swarm toward target Slow target convergence Formation distortion

Simulation Results
e All drones move in coordination and converge smoothly toward the target(10,10).

e The convergence time in simulation is 2 seconds under ideal dynamics, and around 4-6 seconds in realistic
physical environments.

e  The PD control prevents oscillations and ensures smooth velocity profiles.

e Increasing Kp speeds convergence but may cause overshoot.

Increasing Kd smooths movement but slows convergence.

Discussion
e The Laplacian matrix LLL encodes how communication affects formation stability.
e Higher algebraic connectivity A2\lambda_2A2 results in faster convergence.
e The model is scalable — adding drones simply enlarges LLL.

e  Machine learning or reinforcement learning can be integrated to tune Kp and Kd adaptively for changing
environments.
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Conclusion

This study presented a mathematically sound and practically feasible method for drone swarm coordination using PD control
and graph theory.

The approach ensures:

Stable formation maintenance,

Collision avoidance,

Decentralized control (no central node),

Smooth and synchronized convergence to the target.

The framework can be used in surveillance, environmental mapping, and coordinated aerial delivery systems. Future work includes
adaptive control and real-time optimization using machine learning.
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