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Multicollinearity has remained a major problem in regression analysis and should be 

sustainably addressed. Problems associated with multicollinearity are worse when it 

occurs at high level among regressors. This review revealed that studies on the 

subject have focused on developing estimators regardless of effect of differences in 

levels of multicollinearity among regressors. Studies have considered single-estimator 

and combined-estimator approaches without sustainable solution to multicollinearity 

problems. The possible influence of partitioning the regressors according to 

multicollinearity levels and extracting from each group to develop estimators that will 

estimate the parameters of a linear regression model when multicollinearity occurs is 

a new econometrics idea and therefore requires attention. The results of new studies 

should be compared with existing methods namely principal components estimator, 

partial least squares estimator, ridge regression estimator and the ordinary least 

square estimators using wide range of criteria by ranking their performances at each 

level of multicollinearity parameter and sample size. Based on a recent clue in 

literature, it is possible to develop innovative estimator that will sustainably solve the 

problem of multicollinearity through partitioning and extraction of explanatory 

variables approaches and identify situations where the innovative estimator will 

produce most efficient result of the model parameters. The new estimator should be 

applied to real data and popularized for use. 
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1. Introduction 1 

Multicollinearity is an important econometric problem that has received increased attention in recent times (Ayinde et al., 2015; 

Lukman et al., 2015; Ismail and Manjula, 2016; Olanrewaju et al., 2017; Tyagi and Chandra, 2017). The findings of researchers 

(particularly what they have done to address the problems associated with this phenomenon) and the gaps left uncovered are 

the clear objectives of this review. It is obvious (from literature reviewed) that multicollinearity till date is recognized as a very 

serious problem in linear regression model. Multicollinearity is the term used to describe cases in which the explanatory variables 

or regressors are correlated (Lukman et al., 2015). According to this report, in multicollinearity, the regression coefficients are 

characterized by large standard errors and some possess the wrong sign. This culminates in wrong inferences. Efforts are on-

going, both at the national and international levels to tackle the problems of multicollinearity and the result is that an array of 

estimation methods (though with one limitation or the other) have been designed to mitigate the effects of this econometric 

problem. As recently reported by Tyagi and Chandra (2017), such techniques in chronological order available for overcoming this 

problem include stein estimator proposed by Stein (1956), partial least squares originated by Wold in 1966, principal component 

regression estimator introduced by Massy (1965) and ordinary ridge regression estimator originated by Hoerl and Kennard 

(1970). This review will inform new studies by helping to identify important gaps. 
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2. Single Estimator Approach to Multicollinearity Problem 

2.1 The ridge regression estimator 

The ridge regression estimator is a single-estimator approach to solving muticolinearity problems. It was first developed by 

Hoerl and Kennard (1970). Ridge estimator characteristically possesses a smaller mean square error (MSE) than the ordinary least 

square estimator (Vinod and Ullah, 1981). It is defined as  

 
YXKIXX += −1)(̂

                                                               (1) 

 Where k is a non-negative constant called the biasing or ridge parameter. It is observed that when k = 0, (1) returns to 

ordinary least square estimates, 
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  is an orthogonal matrix. It is 

known that as k increases, the ridge regression estimators are biased but however yields more precise estimates than ordinary 

least square estimator (Mardikyan and Cetin, 2008). It has earlier been suggested that the value of k should be chosen small 

enough such that the mean squared error of ridge estimator is less than the mean squared error of ordinary least square 

estimator. Different estimation techniques had been proposed by many researchers. A graphical method called ridge trace was 

proposed by Hoerl and Kennard (1970) to select the valve of the ridge parameter k. This is a plot of the values of individual k̂
 

against range of values of k (0 < k < 1). The minimum value for which k̂ becomes stable and the wrong signs in the regression 

coefficient corrected, is used. Hoerl et al. (1975) proposed a different estimator of k by taking the harmonic mean of the ridge 

parameter. Furthermore, Kibria (2003) proposed some new estimators of k by taking the geometric mean, arithmetic mean and 

median of the ridge parameter. Khalaf and Shukur (2005) proposed k in the form of fixed maximum of the ridge parameter while 

Alkhamisi et al. (2006) suggested another ridge parameter as the arithmetic mean and median of the ridge parameter. Muniz et 

al. (2012) proposed the estimator of the ridge parameter k as the varying maximum and arithmetic mean of the ridge parameter, 

varying maximum and its reciprocal, its square root and reciprocal of its square root and the geometric mean of k, its square root 

and reciprocal of its square root. Lukman and Ayinde (2017) recently stated that the value of k for which the residual sum of 

squares is not too large can be selected. According to this literature, the ridge parameter can take different forms such as fixed 

maximum, varying maximum, arithmetic mean, harmonic mean, geometric mean and median and various types as original form 

(0), reciprocal form (R), square root form (SR) and reciprocal of square root (RSR). Combining the knowledge from these works 

and comparing with simulated data, results showed that best estimator of the ridge parameter technique are of the different 

forms and types and include fixed maximum original, varying maximum original, harmonic mean original and arithmetic mean 

square root. It has got a smaller mean square error than the ordinary least square estimator, a feature which gives it an edge 

over the ordinary least square estimator in the presence of multicollinearity (Lukman et al., 2014). The ridge regression estimator 

reduces multicollinearity by adding the ridge parameter, K, to the main diagonal elements of the correlation matrix, XˈX. 

Furthermore, Liu (1993) introduced an estimator (new class of biased estimate in linear regression) with similarity in form but 

however differs from the ridge regression estimator of Hoerl and Kennard (1970).  

2.2 Principle component  

Principle component is a traditional multivariate statistical method mainly employed to decrease the number of predictive 

variables and provide remedy for the multicollinearity problem (Bair et al., 2006). As revealed by Rosipal and Nicole (2006), the 

aim of principle component is to identify a few linear combinations of the variables that can be used to summarize the data 

without loss of too much information in the process. This approach is based on the fact that  the p set of variables are 

transformed to new p set of orthogonal variables denoted c1
,…, cp

where each variable c j
 is a linear combination of the 

variable  x1
 , . . . , x p

 that is , 
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The linear combinations are variables c1
,…, cp

, such that they are orthogonal and the variance covariance matrix of the 

principal component is; 
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Because the PCs are orthogonal, the off diagonal elements are zero. The diagonal elements 1
 2

…  p

(eigenvalues) arranged in decreasing order of magnitude, are the variances of  the c j
 
with corresponding eigenvectors 
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, the first few of the PCs are used in the regression, satisfying the following properties; 

(i) ( ) 0=ci
E  

(ii) ( ) iic =var   

(iii) ( ) 0,cov =cc ji
 

(iv) ( ) ( ) ( )ccc p
var...varvar

21
  

(v) the first principal component, has the highest variance compared with the variance of any standardized linear combination of 

x. 

(vi) if xii
z =    be a standardized linear combination of x , uncorrelated with the first k PCs, then the variance of 

)1( += kz th PCs. Item (iii) justifies why the use of principle component will remove the problem of multicollinearity. Items iv, v 

and vi show two things. First, principal component successively captures the maximum of the variance of x and secondly, there is 

no standardized linear combination that can capture maximum variances without serving as one of the components. From the 

literature review, this method has been adopted by numerous workers to solve multicollinearity problem, either as a single 

estimator (Massy, 1965; Marquardt, 1970; Bock et al., 1973; Naes and Martens, 1988; Ayinde et al., 2012) or as a combined 

estimator (Ayinde and Lukman, 2014; Ayinde et al., 2015). 
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2.3 Partial least squares  

Partial least squares is a recent technique that generalizes and combines attributes from principal component analysis and 

multiple regression (Abdi, 2003). It originated in the social sciences especially economics (Wold, 1966) and now, it is popular and 

particularly very useful in areas such as chemical engineering, where predictive variables often consist of several different 

measurements in the experiment and where the relationship between these variables are not well-understood (Geladi and 

Kowalski, 1986). Partial least squares is becoming a multivariate technique of choice for both non-experimental and experimental 

data in social sciences (McIntosh et al., 1996). Notably, the partial least square was first presented as an algorithm (Tenenhaus, 

1998) and its statistical properties have been investigated by several workers (Stone and Brooks, 1990; Naes and Helland, 1993; 

Garthwaite, 1994; Helland and Almoy, 1994) with an impressive result. One of the desirable properties of partial least squares is 

that it has got a closed form which is given in equation (4) below. Assume the variables in the set ( )
ii yx  are independent for i= 

1, 2, . . . , n. Then, the PLS estimato r of   is given by 
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The NIPLAS algorithm of Wold (1975) was ultimately modified so as to take into account the responses which culminated in the 

partial least square (PLS) regression algorithm on orthogonal scores presented in Wold et al. (1983). Thus, the general NIPLAS 

algorithm for PLS is given in algorithm below 

 
ETQY +=

          (5)
 

 
FptptX kk +++= ...11           (6)

 

 
EqUqUY kk +++= ...11           (7)

 

with E and F corresponding to residual terms. The decomposition in equations (6) and (7) above is analyzed to a great extent in 

Martens and Naes (1989). In Burnham et al. (2001), the procedure for extraction of the latent variables as well as for the 

estimation of the coefficient of the regression mode has been presented. Considering a univariate partial least square, attempt is 

made to find model of the form 
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          (8)
 

Where PT  is the linear combination of the sX ,

 and P ,
 the parameter variables are assumed to be centered to have mean 

zero and this implies that the intercept terms will always be zero. Thus the algorithm for determining the sT is 

1 Regress ( YY − ) on each XX i −  in term to get ib1  

1 Form 
=

=
m

i

iii XbwT
1

1111  

Where, 

             ib1  is the parameter, iX 1  explanatory variables where the weights iw1  sum to one. 

3   Regress ( YY − ) on  1T  and on each ( XX i − ) on  1T  .The residual from these regressions have the effect of iT  removed 

4 Replace ( YY − ) and each ( XX i − ) by the residual of each corresponding regression. 

5 Go back to step one updating the index 

6 Continue in this manner until all the components or latent variables are extracted. 

Valera (1978) and Gujarati and Porter (2009) stated that the two commonly used weighting scheme are equal weight of each 

predictor and weight directly proportional to variance of 
jX  and then proposed the use of  

1 The standard errors ( )( jij SEw  ) such that 
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Where, 

          )( jSE  = standard error of the jth regression coefficient and  

2 The ranking of their standard errors ( ))( jij SErankw  , such that 
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 Where, 

           )( jRSE   = ranking of standard error of the jth regression coefficient. 

How to choose among all extracted latent variables, precisely the ones that provide the best fit to the data is another task. 

According to Burnham and Anderson (2004), this consideration calls for a balance between under and over-fitted models. 

Furthermore, Akaike (1974) proposed a statistical model fit measure known as the Akaike information criterion (AIC) defined as  

 AIC = -2Lm + 2m        (9) 

Where 
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Lm is the maximized log-likelihood and for linear regression models; -2Lm = -2loglikelihood (known as the deviance) is nlog 

(RSS/n) and m stands for the number in the model. It is interesting to note that this index takes into consideration both the 

statistical goodness of fit and the number of parameters to be estimated and therefore imposing a penalty for increasing the 

number of parameters. Therefore, the index with lowest values indicates the preferred model. Schwarz (1978) developed the 

Bayesion information criterion (BIC) for selection of models among a finite set of models. Partly, it is based on the likelihood 

function and as a matter of fact it is closely related to the Akaike information criterion. However, to prevent over-fitting, the 

penalty term is inevitably larger in BIC than in AIC. Categorically, the model with lowest BIC is preferable. BIC is formally defined 

as  

 BIC = )ln(ˆln2 nKL +−
       (10)

 

Where, 

          L̂ =the maximized value of the likelihood function of the model, 

            X=the observed data, 

          n=the number of data points in X and 

          K= the number of parameters to be estimated. 

Another model selection method is the adjusted R-squared denoted aR 2
 and defined as 
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Simply recall that R2 = 1-RSS/TSS. Therefore, the addition of a variable to a model can only decrease the RSS and thus increases 

the R2. The implication is that R2 itself is not a good criterion because it would always choose the largest possible model. 

However, the addition of a predictor will only increase R2 if it has some value. Meanwhile, minimizing the standard error for 

prediction means minimizing 
2̂  which invariably means maximizing Ra2. It is necessary to comment on the predicted residual 

error sum of squares (PRESS) which is a statistic used in regression analysis to provide a summary measure of the fit of a model 

to a sample of observations that were not themselves used to estimate the model. Briefly, it is calculated as the sum of squares 

of the prediction residuals for concerned observations (Allen, 1974; Tarpey, 2000). Here, the model with the lowest PRESS is 

preferred. Progressively, the Mallow’s Cp is another technique for model selection in regression (Mallows, 1973). It is employed 

to assess the fit of a regression model that has been estimated using ordinary least squares estimator. It is applied during model 

selection where a number of predictor variables are available for predicting some outcomes and the aim is to find the best mode 

involving a subset of these predictors. A small Cp signals that the model is relatively precise and therefore average MSE of 

prediction might be a good criterion, Mallows (1973) concludes. Other model selection methods have been developed and 

applied by many workers and these include the Deviance Information Criterion (Vander, 2005; Celeux et al., 2006), False 

Discovery Rate (Benjamini and Hochberg, 1995), Hannan-Quinn Information Criterion (Burnham and Anderson, 2002) and Bayes 

Factor (Carlin and Chib, 1995; Chen et al., 2000). Although cross validation is the commonest method, it has been shown that the 

corrected Akaike information criterion AICc, outperforms AIC in model selection of q (Hurvich and Tsai, 1989; McQuarrie and Tsai, 

1998). According to the papers reviewed, if the model in question is a linear regression, where k is the number of regressors, 

including the intercept (Findley, 1991), to minimize AIC or BIC, larger models will fit better, have smaller RSS but nevertheless use 

more parameters. The best choice of model will therefore balance fit with size. Since BIC has the capacity to penalize larger 

models more heavily, it will tend to prefer smaller models in comparison to AIC. It is on the record that this approach is 

beneficial in linear regression model in the presence of multicollinearity (Gujarati and Porter, 2009).  

3. Combined Estimator Approach to Multicollinearity Problem 

As part of the efforts to combat multicollinearity problems, the information in literature further revealed that some researchers 

have combined two estimation techniques with the hope that the combination will confer an advantage and become superior to 

the single-estimator approach. In chronological order, one of the oldest attempts was made in 1984 when Baye and Parker gave 

r – k class estimator by combining the principal component regression estimator and the ordinary ridge regression estimator, 

which includes the ordinary least squares estimator, ordinary ridge regression estimator and principal component regression 

estimator as special cases. Interestingly, Nomura and Ohkubo (1985) obtained conditions for dominance of the r – k class 

estimator over its special cases using the mean square error as criterion. Liu (1993) combined the merits of the stein and ordinary 
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ridge regression estimator to obtain an estimator called the Liu estimator. Kaciranlar and Sakallioglu (2001) combined the Liu 

estimator and principal component regression estimator to get the r – d class estimator and demonstrated the superiority of this 

estimator over the ordinary least squares estimator, Liu estimator and principal component regression estimator. Ozkale and 

Kaciranlar (2007) combined the ordinary ridge regression estimator and Liu estimator to have a two-parameter estimator. They 

obtained necessary and sufficient condition for dominance of the two-parameter estimator over the ordinary least square 

estimator in mean square matrix sense. Yang and Chang (2010) worked on the combination of ordinary ridge regression 

estimator and Liu estimator in a different manner and proposed an another two-parameter estimator and here derived necessary 

and sufficient conditions for superiority of the another two-parameter estimator over the ordinary least square estimator, 

ordinary ridge regression estimator, Liu estimator and two parameter estimator under the mean square matrix criterion. Ozkale 

(2012) proposed a general class of estimators, r – (k,d) class estimator and assessed its performance under the mean square error 

criterion. The proposed estimator was a combination of the two-parameter estimator and principal component regression 

estimator and superiority was shown. This is interesting. Chang and Yang (2012) proposed the principal component two-

parameter estimator by the combination of the principal component regression estimator and another two-parameter estimator 

and evaluated its performance under the mean square matrix sense. Tyagi and Chandra (2017) examined the performance of two 

biased estimators in the presence of multicollinearity with autocorrelated errors which include the same number of unknown 

parameters with the same range. In Tyagi and Chandra (2017), result suggests that for all the parametric conditions considered in 

the investigation, r – (k,d) class estimator performs better than the principal components two-parameter estimator under scalar 

mean square error sense. The shift from single estimator approach to a combined estimator approach was a progressive effort 

targeted at solving multicollinearity problem.  

4. Idea of Partitioning and Extraction of the Explanatory Variables: Need for Research and Application 

Previous studies on the subject have concentrated on developing estimators regardless of effect of differences in levels of 

multicollinearity among regressors. However, the increased concern for a sustainable solution to multicollinearity has compelled 

reorientation of research focus to the development of new ideas. In responding to the call, researchers in the field should 

examine the influence of partitioning the regressors according to multicollinearity levels and extracting from each group to 

develop estimators that will estimate the parameters of a linear regression model when multicollinearity exist in a linear 

regression model. Recently, the idea to partition and extract in order to solve multicollinearity problem has been inspired by 

William (2015). From the review, it is incontrovertible that the application of partitioning and extraction of explanatory variables 

in solving multicollinearity problems have been grossly understudied or largely untested. Therefore, there is need to encourage 

research on partitioning and extraction of the explanatory variables and apply the same to solve multicollinearity problem 

sustainably. 

5. Concluding Remarks: Suggested Research Lines that Will Tackle Multicollinearity Problems  

This study reviewed old and new works on multicollinearity problems with the purpose of suggesting sustainable solution. The 

present study contributed to existing knowledge by bringing to limelight the influence of partitioning the regressors according 

to multicollinearity levels and extracting from each group to develop estimators that will estimate the parameters of a linear 

regression model when multicollinearity occurs. Researchers in the field of econometrics should capitalize on the findings 

highlighted in this review to develop innovative estimator(s) that will sustainably solve the problem of multicollinearity by 

addressing the following problems which form the important suggestions for future work: 

i. develop estimators for solving multicollinearity problems through principal component and partial least squares techniques 

employing partitioning and extraction of explanatory variables approaches. 

ii. examine the performance of newly-developed method in many linear regression models with different degrees of 

multicollinearity using simulated data.  

iii. compare the performance of the new method(s) with existing methods under different degrees of multicollinearity. 

iv. identify situations where the new method will produce most efficient result of the model parameters. 

v. apply the new method using real data and popularize for use. 
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