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| ABSTRACT 

This study x-rays the analysis of convection heat transport of hydromagnetic Forchheimer nanofluid flow in the presence of an 

ideal internal heat source/sink. A similarity tactic is followed by translating the partial differential models into coupled nonlinear 

ordinary differential equations. The application of the improved series scheme made it possible for the solution to the translated 

problems to be found. Pictorial developments such as graphs with legends have been gotten by adopting the Wolfram 

Mathematica package for the sake of understanding the behavioral pattern of flow, temperature, and specie (nanoparticle) 

concentrations due to the influence of fluid parameters on them. Results demonstrated that an increase in flow and temperature 

occurs as buoyancy effect, and optimal heat generation number rises. Intensification of Prandtl number leads to a drop in the 

flow rate and temperature just as the concentration distribution declines for 𝑠𝑛 > 0. The impact of fluid parameters on skin friction 

was also considered. 
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1. Introduction 

Adequate heat transmission and controlling processes are paramount for optimal functioning and lifespan extension of industrial 

machines, electrical circuits, solar power collectors, etc. Therefore, in order to achieve a high degree of industrial machine efficiency, 

the conductivity of heat in a fluid through a medium is required to be at a normal rate. However, the thermal transfer rate is a 

function of the type of fluid being employed. Therefore, in order to achieve remarkable heat transmission through a medium, a 

fluid with high conductivity capacity becomes paramount. Hence, the need for nanofluid arises. In clear terms, nanofluid is made 

up of convectional fluids example, liquids, oils, ethylene glycol (ECG), etc., and particles in the form of oxides of metals, ceramics 

with high conductivity and chemical properties, as well as nanotubes and some sorts of carbon. Thus, in order to maintain stability 

and reduce the surface tension of the blend, the surfactant is sometimes added. The applications of this study range from the 

production of synthetic rubber sheets and plastic, drawing of cables and fiber sheets, production of papers, glass fiber production 

(blowing and spinning), spinning of steel, aluminum alloy, metals, cooling of an infinite hot metal sheet in a tub, an effective 

cooling process in the reactors of nuclear fission through the aid of electromagnetic forces in supplying liquified sodium to the 

nuclear power reactors through a process termed nuclear reactor fluidization. Similarly, the applications of this research in the 

aerospace and automotive, medical field, electronics, food manufacturing, and processing establishments are also of great 

importance. An input in quasi malleable fluid because of special features of being viscid as well as perfect polymer fluids are 

attributed to Willamson [1929]. Rasool and Wakif [2021] used spectral techniques to inquire about convection thermal transmission 

for the electro-magnetohydrodynamic second form fluid movement containing species (nanoparticles) by deploying Buongiorno’s  
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posture for examination. Similarly, Benos et al. [2019] adopted the application of blood reliance on nanofluids in different medical 

pertinence. The aids due to nanofluid movement with diverse settings have been presented by Kumar et al. [2020]. Several natural 

phenomena appear in indirect order, whereas others are extremely direct in occurrence. In such cases, it becomes difficult to obtain 

their closed-form solutions. As a result of this, several scholars consider numerical or semi-analytical methodology. Nasir et al. 

[2018] applied the homotopy analysis method to resolve the problems. The study of chemical reaction and radiation effects on 

magnetohydrodynamic Nanofluid flow over a sheet stretching exponentially was reported by Uka et al. [2022]. Pal et al. [2010] 

reported the effect of heat radiation in flows that violates Darcy’s law by becoming laminar in assembling, increasing more than 

the Reynolds parameter leading to a stormy form of flow. The non-linearity models are changed to become ordinary differential 

equations without linearity in them by employing the similarity conversion idea; hence, the ideal homotopy analysis technique 

helps in the solution procedure. Similarly, Amos and Uka [2022] anchored the hydromagnetic nanofluid passage past an 

exponentially stretching plate with radiation and nonuniform heat generation/absorption. The Jeffery constituents exist as one of 

the fluids which does not obey Newton’s law of viscosity by forecasting the delay as well as reduction outcomes in fluid flow 

problems. Its fluid equations are vital in biomedical sciences, oil basin procedures as well as chemical expertise, Shehzad et al., 

[2012], Turyilmaoglu [2014], Ellahi and Hussain [2015]. The results on Nusselt and Sherwood factors were presented graphically by 

Dehghan [2010]. Sheikholeslami et al. [2014] explored micropolar fluid passage in a conduit with chemical reaction by adopting 

the perturbation approach in terms of homotopy. They affirmed that under suction as well as blowing, Reynolds and Paclet 

parameters show a connection between Nusselt and Sherwood factors. The analysis of free and forced convection movement of 

Jeffrey fluid past a disposed expanding material in the presence of a two-stratification impact was recorded by Hayat et al. [2017]. 

They opined that due to an increased curvature number, the rate of flow, heat, and diffusion graphs rises far from the cylinder. 

Also, the effect of heat and mass parameters leads to a lessening of both temperature and diffusion. Sui et al. [2016] investigated 

heat and mass transport in the midst of Cattaneo-Christov dual-diffusion in higher Maxwell nanofluid over an elongating plate. 

The observations from their report showed that viscoelastic easing context structure provides support to envisage the reduction 

flow features. The analysis of Darcy-Forchheimer's theory for studying both free and forced flow of convection in the presence of 

different viscosity and radiation has been considered by Pal and Mondal [2012]. However, due to the importance and applicability 

of heat transport processes in technological development, more researchers have developed a greater interest in this field of study. 

Thus, the investigation of Darcy-Forchheimer's impacts on viscous transportation past an external plain is attributed to Ganesh et 

al. [2016]. Their result indicated an increase in temperature as a result of viscid debauchery impact. Hayat et al. [2016] studied the 

Darcy-Forchheimer flow with a degree of coldness/hotness reliant on thermal conduction and Cattaneo-Christov thermal fluidity 

relation. An examination of the effect of thermophoresis as well as viscid indulgence over a soaked absorbent surface on Darcy-

Forchheimer transmission is attributed to Saddek [2006]. The homotopy analytical means was used to examine the three-

dimensional movement of Carreau fluid in the presence of a magnetic field Ellahi et al. [2017].  

 

Thus, in this study, we shall model the fluid flow problem under consideration by using appropriate mathematical equations and 

conditions at the boundary of the wall. Also, analytical solutions and their numerical simulations shall be obtained in order to 

examine the impact of fluid parameters on the flow geometry. The results obtained will be showcased graphically and discussed 

in detail. 

2. Mathematical Expressions 

Consider an incompressible electrically conducting hydromagnetic convective heat conveyance Darcy-Forchheimer nanofluid flow 

in two-dimensional axes with one in the direction of the sheet as 𝑥 and the other being vertical is represented by 𝑦. The temperature 

and concentration far from the plate are smaller than the ones on the exterior of the sheet, which remains unvaried. The sketched 

representation of the flow, as well as models describing the continuity, rate of flow, heat, and specie (nanoparticle) concentration, 

are represented as follows: 
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 𝜕𝑢
𝜕𝑥⁄ + 𝜕𝑢

𝜕𝑦⁄ = 0                                                                                                                      (1) 

𝑢 𝜕𝑢
𝜕𝑥⁄ + 𝑣 𝜕𝑢

𝜕𝑦⁄ =   
𝜇

𝜌
𝜕2𝑢

𝜕𝑦2⁄ −
𝜎𝐵𝑜

2

𝜌⁄  𝑢 − 1
𝑘𝑚

⁄ (𝑢2 − 𝑢∞
2 ) + 𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽(𝐶 − 𝐶∞)  (2) 

 𝑢 𝜕𝑇
𝜕𝑥⁄ + 𝑣 𝜕𝑇

𝜕𝑦⁄ = 𝑘
(𝜌𝑐)𝑓

⁄ 𝜕2𝑇
𝜕𝑦2⁄ +

(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
⁄ [𝐷𝐵(𝐶 − 𝐶∞)(𝑇 − 𝑇∞) +

𝐷𝑇

𝑇∞

(𝑇 − 𝑇∞)2]                   +
𝑄ℎ

𝜌𝐶𝑝
⁄  (𝑇 − 𝑇∞)   

         (3) 

 𝑢 𝜕𝐶
𝜕𝑥⁄ + 𝑣 𝜕𝐶

𝜕𝑦⁄ = 𝐷𝑚
𝜕2𝐶

𝜕𝑦2⁄ +
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
⁄

𝐷𝑇
𝑇∞

⁄ (𝑇 − 𝑇∞)      (4) 

 

 𝑢 = 0,    𝑣 = 𝑠𝑣,    𝑇 = 𝑇𝑤,   𝐶 = 𝐶∞                   at  𝑦 = 0                                  (5)      

 𝑢 → 𝑈∞,  𝑇 → 𝑇∞,  𝐶 → 𝐶∞                            as  𝑦 → ∞                                             

Such that, 

 

 𝜌𝑓 ⇒ density of fluid, 𝜎 ⇒ electrical conduction number, 𝛽 ⇒ volumetric heat extension coefficient, 𝑔 ⇒ acceleration from gravity, 

𝑘 ⇒ thermal transference, 𝜇 ⇒ fluid viscosity,     

 𝐷𝑇 = thermophoresis diffusion coefficient, 𝐷𝐵 ⇒ Brownian movement quantity, temperature, T at the boundary, i.e., 𝑦 𝑎𝑡 𝑧𝑒𝑟𝑜 ⇒ 

𝑇𝑤, ambient temperature ⇒ 𝑇∞, nanoparticle concentration ⇒ 𝐶, 
𝜌𝑐𝑝

𝜌𝑐𝑓
= 𝜏 ⇒ ratio of heat capacity of specie nanoparticle to nanofluid, 

𝑄ℎ ⇒ thermal factor. 

The similarity transformation variables defined below shall be used.  

𝜂 =
𝑦

√
𝑢∞

𝑣𝑥

⁄
 , 𝜑 = 𝑢∞√𝑣𝑥

𝑢∞⁄ 𝑔(𝜂) , 𝜃 =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
⁄ ,    ∅ =

𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

⁄  

𝑇 − 𝑇∞ = 𝜃(𝜂)(𝑇𝑤 − 𝑇∞),      𝑇 = 𝜃(𝜂)(𝑇𝑤 − 𝑇∞) + 𝑇∞                          (6) 

𝐶 − 𝐶∞ = ∅(𝜂)(𝐶𝑤 − 𝐶∞)     ⇒ 𝐶 = ∅(𝜂)(𝐶𝑤 − 𝐶∞) + 𝐶∞      

 𝑣 = −
𝜕𝜑

𝜕𝑥
⁄ , 𝑢 =

𝜕𝜑
𝜕𝑦⁄  

From equation (1) 
𝜕𝑢

𝜕𝑥⁄ + 𝜕𝑢
𝜕𝑦⁄ = 0  

Substituting 𝑣 = −
𝜕𝜑

𝜕𝑥
⁄ , 𝑢 =

𝜕𝜑
𝜕𝑦⁄  into equation (1) imply 

𝜕2𝜑
𝜕𝑥𝜕𝑦

⁄ −
𝜕2𝜑

𝜕𝑥𝜕𝑦
⁄ = 0  

Thus, equation (1) holds.  

Transforming equations (2) – (4) using equation (6) and simplifying further yields, 

 
𝜕3𝑔

𝜕𝜂3⁄ + 1
2⁄ 𝑔

𝜕2𝑔
𝜕𝜂2⁄ + 𝛽 (1 − (

𝜕𝑔
𝜕𝜂⁄ )

2

) − 𝐻
𝜕𝑔

𝜕𝜂⁄ + 𝐺𝑡𝑓(𝜂) + 𝐺𝑠∅(𝜂) = 0 (7)  
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𝜕2𝑓
𝜕𝜂2⁄ + 𝑃𝑟𝑓(𝜂) 𝜕𝑓

𝜕𝜂⁄ + 𝐵𝑚𝑓(𝜂)∅(𝜂) + 𝑇𝑃𝑓(𝜂) + 𝑄𝑓(𝜂) = 0    (8) 

  𝜕
2∅

𝜕𝜂2⁄ + 𝑆𝑐𝑓(𝜂) 𝜕∅
𝜕𝜂⁄ +

𝑇𝑃
𝐵𝑚

⁄ 𝑓(𝜂) = 0      (9) 

In line with  𝑔′(0) = 1, 𝑔(0) = 𝑍0, 𝑓(0) = 1, ∅(0) = 1, for 𝜂 = 0 

                    𝑔′(∞) → 0,  𝑓(∞) → 0,  ∅(∞) → 0, ∋   𝜂 → ∞                              (10) 

 

with,  

 𝛽 = 1
𝐾𝑚

⁄ 𝑥, 𝐻 =
𝜎𝐵0

2𝑥
𝜌𝑈∞

⁄ , 𝐺𝑡 =
𝛽𝑔𝑓(𝑇𝑤 − 𝑇∞)𝑥

𝑈∞
2⁄ , 𝐺𝑠 =

𝛽𝑔∅(𝐶𝑤 − 𝐶∞)𝑥
𝑈∞

2⁄ , 𝑃𝑟 = 𝜗
𝛼⁄ ,  

 𝑀𝐵 =
𝛼𝐷𝐵(𝐶𝑤 − 𝐶∞)𝑥

𝑈∞
2⁄ , 𝑇𝑃 =

𝜇𝐷𝑇(𝐶𝑤−𝐶∞)𝑥
𝑣𝑇∞

⁄ , 𝑆𝑐 = 𝑣
𝐷𝑚

⁄ , 𝑔0 =
𝑍𝑤

𝑦/√
𝑣𝑥

𝑈∞

⁄
  

 refers to permeability, Hartmann, modified heat and mass Grashof, Prandtl, Brownian motion, Thermophoresis, Schmidt, and 

Suction numbers accordingly. 

 

3. Methods and Solution Setup 

Let  

 𝜂 = 𝛤𝑔0, 𝑔(𝜂) = 𝑔0𝐺(𝜂), 𝑓(𝜂) = ℎ(𝜂), ∅(𝜂) = 𝑧(𝜂), 𝜚 = 1
𝑔𝑜

2⁄      (11) 

Using equation (11) in equation (7) – (9), will yield 

  𝜕
3𝐺

𝜕𝜂3⁄ + 1
2⁄ 𝐺 𝜕2𝐺

𝜕𝜂2⁄ + 𝛽𝜚2 − 𝛽 (𝜕𝐺
𝜕𝜂⁄ )

2
− 𝐻 𝜕𝐺

𝜕𝜂⁄ 𝜚 + 𝐺𝑡ℎ(𝜂)𝜚2 + 𝐺𝑠𝑧(𝜂)𝜚2 = 0  (12) 

 𝜕
2ℎ

𝜕𝜂2⁄ + 𝑃𝑟𝐺(𝜂) 𝜕ℎ
𝜕𝜂⁄ + 𝐵𝑚ℎ(𝜂)𝑍(𝜂)𝜚 + 𝑇𝑃ℎ(𝜂)𝜚 + 𝑄ℎ(𝜂)𝜚 = 0    (13) 

𝜕2𝑧
𝜕𝜂2⁄ + 𝑆𝑐𝐺(𝜂) 𝜕𝑧

𝜕𝜂⁄ +
𝑇𝑃

𝐵𝑚
⁄ ℎ(𝜂)𝜚 = 0       (14) 

With  

 𝐺(0) = 1, 𝐺′(0) = 𝜚, 𝐺′(∞) = 0, ℎ(0) = 1, ℎ(∞) = 0, 𝑍(0) = 1, 𝑍(∞) = 0 (15) 

In the case of 𝜚 ≪ 1, series approach becomes necessary by adopting the solutions as stated thus: 

 𝐺(𝜂) = 1 + 𝜚𝐺1(𝜂) + 𝜚2𝐺2(𝜂) + ⋯        (16) 

 ℎ(𝜂) = ℎ0(𝜂) + 𝜚ℎ1(𝜂) + ⋯         (17) 

 𝑍(𝜂) = 𝑍0(𝜂) + 𝜚𝑍1(𝜂) + ⋯         (18) 

Differentiating equations (16) – (18) with respect to 𝜂, making the substitution of the results into equations (12) - (14), and 

considering the same index of corresponding coefficients will produce: 

𝜕2ℎ0
𝜕𝜂2⁄ + 𝑃𝑟

𝜕ℎ0
𝜕𝜂⁄ = 0; ℎ0(0) = 1, ℎ0(∞) = 0     (19) 

𝜕2𝑍0
𝜕𝜂2⁄ + 𝑆𝑐

𝜕𝑍0
𝜕𝜂⁄ = 0; 𝑍0(0) = 1, 𝑍0(∞) = 0     (20) 

𝜕3𝐺1
𝜕𝜂3⁄ + 1

2⁄
𝜕2𝐺1

𝜕𝜂2⁄ = 0; 𝐺1(0) = 0, 
𝜕𝐺1

𝜕𝜂⁄ (0) = 1, 
𝜕𝐺1

𝜕𝜂⁄ (∞) = 0   (21) 

 

𝜕2ℎ1
𝜕𝜂2⁄ + 𝑃𝑟

𝜕ℎ1
𝜕𝜂⁄ + 𝑃𝑟𝐺1(𝜂) 𝜕ℎ0

𝜕𝜂⁄ + 𝐵𝑚ℎ0(𝜂)𝑍0(𝜂) + 𝑇𝑃ℎ0(𝜂) + 𝑄ℎ0(𝜂) = 0     (22) 

 ℎ1(0) = 0, ℎ1(∞) = 0        

𝜕2𝑍1
𝜕𝜂2⁄ + 𝑆𝑐

𝜕𝑍1
𝜕𝜂⁄ + 𝑆𝑐𝐺1(𝜂) 𝜕𝑍0

𝜕𝜂⁄ +
𝑇𝑃

𝐵𝑚
⁄ ℎ0(𝜂) = 0; 𝑍1(0) = 0, 𝑍1(∞) = 0 (23)  

𝜕3𝐺2
𝜕𝜂3⁄ +

1

2

𝜕2𝐺2
𝜕𝜂2⁄ + 1

2⁄ 𝐺1
𝜕2𝐺1

𝜕𝜂2⁄ + 𝛽 − 𝛽 (
𝜕𝐺1

𝜕𝜂⁄ )
2

− 𝐻
𝜕𝐺1

𝜕𝜂⁄ + 𝐺𝑡ℎ0(𝜂) + 𝐺𝑠𝑍0(𝜂) = 0  

𝐺2(0) = 0,   
𝜕𝐺2

𝜕𝜂⁄ (0) = 1,  
𝜕𝐺2

𝜕𝜂⁄ (∞) = 0    (24) 

 

Equations (19) – (24) are solved analytically for the velocity, temperature, and concentration and presented as follows: 

 𝑔′(𝜂) = 𝑒𝑥𝑝 − 1
2⁄ 𝜂 + 𝛿(−2𝜂𝑒𝑥𝑝 − 1

2⁄ 𝜂 + 𝑒𝑥𝑝 − 1
2⁄ 𝜂 − 𝑒𝑥𝑝 − 𝜂 + 2𝛽𝜂 − 4𝛽 + 2𝛽𝑒𝑥𝑝 − 𝜂 − 4𝐻𝜂𝑒𝑥𝑝 − 1

2⁄ 𝜂 + 4𝐻𝑒𝑥𝑝 − 1
2⁄ 𝜂 −

2Gt

Pr(2Pr−1)
𝑒𝑥𝑝 − 𝑃𝑟𝜂 −

2Gs

Sc(2Sc−1)
𝑒𝑥𝑝 − 𝑆𝑐𝜂 − 4𝐻𝑒𝑥𝑝 − 1

2⁄ 𝜂 − 4𝛽𝜂𝑒𝑥𝑝 − 1
2⁄ 𝜂 + 2𝛽𝑒𝑥𝑝 − 1

2⁄ 𝜂 +
2Gt

Pr(2Pr−1)
𝑒𝑥𝑝 − 1

2⁄ 𝜂 +

2Gs

Sc(2Sc−1)
𝑒𝑥𝑝 − 1

2⁄ 𝜂)             (25) 

 ℎ(𝜂) = 𝑒𝑥𝑝 − 𝑃𝑟𝜂 + 𝛿(2𝜂𝑒𝑥𝑝 − 𝑃𝑟𝜂 + 8Pr
1 + 2Pr⁄ 𝑒𝑥𝑝 − (1

2⁄ + 𝑃𝑟)𝜂 − 

Nb
Sc(Pr + Sc)⁄ 𝑒𝑥𝑝 − (𝑆𝑐 + 𝑃𝑟)𝜂 + Nt

𝑃𝑟⁄ 𝜂𝑒𝑥𝑝 − 𝑃𝑟𝜂 +
𝑄

Pr⁄ 𝜂𝑒𝑥𝑝 − 𝑃𝑟𝜂 + Nb
Sc(Pr + Sc)⁄ 𝑒𝑥𝑝 − 𝑃𝑟𝜂 − 8Pr

1 + 2Pr⁄ 𝑒𝑥𝑝 − 𝑃𝑟𝜂) 

(26)  
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 𝑍(𝜂) = 𝑒𝑥𝑝 − 𝑆𝑐𝜂 + 𝛿(−2Sc𝜂𝑒𝑥𝑝 − 𝑆𝑐𝜂 − 8(Sc)2

1 + 2Sc
⁄ 𝑒𝑥𝑝 − (1

2⁄ + 𝑆𝑐)𝜂 − Nt
PrNb(Pr − Sc)⁄ 𝑒𝑥𝑝 − 𝑃𝑟𝜂 + 8(Sc)2

1 + 2Sc
⁄ 𝑒𝑥𝑝 −

𝑆𝑐𝜂 +      Nt
PrNb(Pr − Sc)⁄ 𝑒𝑥𝑝 − 𝑆𝑐𝜂)     (27) 

 

Note: 𝛿 = 0.01. The numerical simulation of equations (25) – (27) is enabled by the usage of Mathematica and Wolfran language. 

However, quantities of interest in the engineering development are stated as 𝑔′′(0) = 𝑔𝑜
3𝐺′′ for the skin friction due to the rate of 

flow, 

 ℎ′(0) = 𝑔𝑜ℎ′ refers to Nusselt factor associated with the rate of heat transportation coefficient, and the Sherwood factors 

regarding the concentration transmission coefficient imply 

 𝑧′(0) = 𝑔𝑜𝑧′. Thus, the following results in legend form seek to provide a clearer insight into this study.    

  

4. Results and Discussion 
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From the legends displayed above, the vertical axis stands for the dimensionless velocity, temperature, and nanoparticle 

concentration, while the horizontal axis shows the similarity variable. The effect of the fluid parameters on the various flow fields 

has been obtained as each of them is varied, just as the other remains unchanged. 

 

The effect of the Hartman factor 𝐻 on the velocity is captured in figure 1. It shows that velocity decreases as the parameter rises. 

Actually, impeding energy, referred to as Lorentz force, exists in the flow and forms a sort of resistance feature, hence the decrease 

in the rate of fluid flow. The evolution of modified heat Grashof parameter 𝐺𝑡 is evidenced in figure 2. As convection intensifies in 

the fluid, more energy is gained, thus leading to an enhancement in the velocity. In figure 3, the impact of the modified mass 

Grashof factor on the velocity has been shown. The velocity surges as this number rises. The influence of the Forcchiemer 



JMSS 3(2): 18-30 

 

Page | 29  

permeability variable 𝛽 on the flow rate is highlighted in figure 4. When this viable parameter is raised, the more fluid passage will 

set in, thereby increasing the velocity of the fluid. Figures 5 and 6 depict the result of the thermophoresis factor on the temperature 

and concentration of the nanoparticles in the nanofluid. Really, this parameter relates to the difference in a temperature gradient, 

and as it intensifies, the heated surface conveys the heat to the cooler part, thereby heating it up while more heat energy is added 

to nanoparticle concentration which leads to an increase in their kinetic energy. Thus, the heat and mass boundary layers improve, 

leading to an increase in the temperature and concentration. The effect of the Brownian motion number on temperature is 

noticeable in figure 7. Due to the rise in the heat energy possessed by the nanoparticles as a result of their random motion, the 

thermal boundary layer becomes thinner as the temperature increases. The illustration of the outcome of the heat source and sink 

is shown in figures 8 and 9, respectively. Addition of heat (𝑄 > 0 ) to the fluid leads to an enhancement of thermal energy and 

boundary layer. Thus, this brings about an intensification of temperature while the reverse will be the case, i.e., temperature 

decreases when there is the removal of heat (𝑄 < 0) from the fluid. In figure 10, the effectiveness of the Prandtl parameter on 

temperature is presented. When this number is < 1, the thermal boundary layer becomes thicker but remains thinner as it is > 1.1. 

The Prandtl number is of great value in terms of its cooling characteristics in conducting fluids. Hence, increasing it amounts to a 

reduction in temperature. The effect of the Schmidt number on the concentration distribution is offered in figure 11. This number 

accounts for the ratio of the viscous diffusivity rate to that of mass diffusivity. When it is raised, there’s a decrease in the boundary 

layer, and this causes a reduction in the concentration profile. However, intensification of Hartman, Permeability, thermal, and 

concentration Grashof factors depicts a rise in skin friction as noted in figures 12 – 15. 

 

5. Conclusion 

This current study investigates the analysis of hydromagnetic Convective heat Transport of Forchheimer nanofluid flow with a 

nonlinearly permeable surface and optimal internal heat source/sink through numerical means. Based on the findings from this 

work, the following conclusion follows: 

 

(i) Enhancement of the permeability, modified heat, and concentration Grashof factors entail intensification of the velocity. (ii) An 

increase in the Hartman number leads to a decrease in the rate of fluid flow. (iii) A rise in the thermophoresis, Brownian motion, 

and heat generation (𝑄 > 0 ) numbers are associated with an increase in temperature. (iv) A decreasing temperature distribution 

is evident in the case of heat absorption (𝑄 < 0) and 𝑃𝑟 > 0. (v) The concentration field rises as the thermophoresis number 

enhances, while it falls when the Schmidt number is intensified.  

(vi) The distribution of the skin friction rises with the Hartman, Permeability, Thermal, and concentration Grashof factors.  

 

5.1 Contribution to Knowledge 

Based on the findings from this work, heat transfer serves as a vital concept in different industrial and engineering progressions. 

Thus, the relevance of this work cannot be overemphasized due to its application to civil, mechanical, and chemical engineering 

processes since heat transfer plays an important role in material selection, machinery efficiency, and reaction kinetics. Also, this 

study has revealed that the spray-drying technology depends on intensive heat transfer. However, spray-drying is a quick, 

continuous, cost-effective, reproducible, and scalable process for the production of dry powers from a fluid material by atomization 

through an atomizer into a hot drying gas medium such as air. In terms of technological advancement, this study has also showed 

that heat exchangers and mechanisms are highly useful in refrigeration, air conditioning systems, space heating, power generation, 

etc.; thus, a good example of a heat exchanger is the radiator in an automobile, i.e., car, in which the dual performing fluids refers 

to air and coolant. With the flowing of air around the radiator, heat is conveyed to the air from such coolant, and the essence of 

the air is to expunge heat from the coolant, thereby making the coolant depart from the radiator at a given lesser temperature 

level than it moves in. 

 

5.2 Research limitations and Further Research 

This study is limited to the steady case in two-dimensional forms. Also, it considers the Forchheimer Nanofluid. Thus, future 

research can be examined with consideration given to an unsteady case, three-dimensional components with non-Newtonian 

fluids. 
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