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| ABSTRACT 

Spline smoothing is a technique used to filter out noise in time series observations when predicting nonparametric regression 

models. Its performance depends on the choice of the smoothing parameter. Most of the existing smoothing methods applied 

to time series data tend to overfit in the presence of autocorrelated errors. This study aims to determine the optimum 

performance value, goodness of fit and model overfitting properties of the proposed Smoothing Method (PSM), Generalized 

Maximum Likelihood (GML), Generalized Cross-Validation (GCV), and Unbiased Risk (UBR) smoothing parameter selection 

methods. A Monte Carlo experiment of 1,000 trials was carried out at three different sample sizes (20, 60, and 100) and three 

levels of autocorrelation (0.2, 05, and 0.8). The four smoothing methods' performances were estimated and compared using the 

Predictive Mean Squared Error (PMSE) criterion. The findings of the study revealed that: for a time series observation with 

autocorrelated errors, Adj.  R2(PSM λ = 0.04)provides the best-fit smoothing method for the model, the PSM does not over-fit 

data at all the autocorrelation levels considered (ρ = 0.2, 0.5 and 0.8); the optimum value of the PSM was at the weighted value 

of 0.04 when there is autocorrelation in the error term, PSM performed better than the GCV, GML, and UBR smoothing methods 

were considered at all-time series sizes (T = 20, 60 and 100). For the real-life data employed in the study, PSM proved to be the 

most efficient among the GCV, GML, PSM, and UBR smoothing methods compared. The study concluded that the PSM method 

provides the best fit as a smoothing method, works well at autocorrelation levels (ρ=0.2, 0.5, and 0.8), and does not over fit time-

series observations. The study recommended that the proposed smoothing is appropriate for time series observations with 

autocorrelation in the error term and econometrics real-life data. This study can be applied to; non – parametric regression, non 

– parametric forecasting, spatial, survival, and econometrics observations. 
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1. Introduction 

The smoothing spline is a spline consisting of piecewise third-request polynomials that go through a bunch of control focuses. 

The second subsidiary of every polynomial is ordinarily set to zero at the endpoints since this gives a limit condition that finishes 

the framework condition of 𝑚 − 2 conditions; this creates a purported "normal" cubic spline and prompts a straightforward tri-

diagonal framework that can be settled effectively to give the coefficients of the polynomials. The parameters are estimated by 

minimizing the residual sum of squares (RSS) and a roughness penalty. A general test of “loyalty to observation" for a curve g is 

the residual sum of squares. If g is allowed to be any curve – unrestricted in functional form, then this distance test can be reduced 

to zero by any g that interpolates the observation. The curve would not be admitted because it is not exclusive and because it has 

a structure-oriented interpretation [Wahba, 1993]. The spline smoothing approach avoids impossible interpolation of the 
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observation by evaluating the contest between the tasks of producing a good fit to the observation and producing a curve without 

too much rapid local change. The main function of splines is for interpolation, but they can also be used for parametric and non-

parametric regression modeling; the most commonly used spline smoothing technique is the cubic splines. Spline smoothing 

produces another technique for local polynomial regression, and it is also a charming component of additive regression models. 
It is well known that correlation greatly affects the selection of smoothing parameters, which is critical to the performance of 

smoothing spline. The commonly used approach in time series analysis is the classical ARMA method. It assumes linear dependence 

on past values and past innovations. Generalized Cross Validation (GCV) and Generalized Maximum Likelihood (GML) are the most 

appropriate spline smoothing method for selecting an optimal value for the smoothing parameter and performance criteria for 

smoothing parameter selection. So many scholars have carried out research on this area, and most of them discovered that time 

series data assume independence of regressors and error terms, which lead to autocorrelation problems. The application of 

smoothing parameter estimators like GCV and GML does not always solve these problems because they don’t occasionally smooth.  

 

Over the last two decades, research on spline smoothing estimation methods has produced a vast amount of information and 

discoveries from researchers in evaluating the efficiency and performance of the existing estimation techniques when 

autocorrelation is present in their error terms. In this research work, the proposed smoothing method is compared with three 

classical smoothing spline parameter selection techniques with the intention of providing a robust smoothing parameter 

estimation method that will alleviate the problem of over fitting models for time-series data with low, moderate, and high 

autocorrelation levels and the problem associated with the smoothing methods’ performance when different time series sample 

sizes are utilized. 

 

In Section 2, the cubic smoothing spline was discussed, method of selecting smoothing parameters like Generalized Cross-

Validation, Generalized maximum Likelihood, Mallow’s CP criterion, and performance evaluation criteria were also discussed in this 

section. A simulation study and results are given in Sections. Finally, concluding remarks are presented in Section 4. 

2. Literature Review  

A lot of attention has been directed to studies on smoothing with autocorrelated error. [Aydin, 2011] made a comparison between 

GCV and REML, and it was recommended that GCV and REML are good smoothing parameter selections for small and medium-

sized samples. [Chen, 2011] & [ Adams, 2019] applied the smoothing spline method to fit a curve to a noisy data set, where the 

selection of the smoothing parameter is essential. An improved Cp criterion for spline smoothing based on Stein’s unbiased risk 

estimate has been proposed to select the smoothing parameter. The resulting fitted curve is superior and more stable than 

commonly used selection criteria and possesses the same asymptotic optimality as Cp. [Aydin, 2013] applied most of the data-

driven smoothing parameter selection methods and compared them based on large and small sample sizes. The parallel of Akaike’s 

information criterion and Generalized Cross-Validation is recommended as being the best selection criteria. For large samples, the 

GFAIC method would seem to be more appropriate, while for small samples, they proposed the implementation of the GCV criterion. 

[Jansen, 2005] investigates two types of results that support the use of GCV for variable selection under the assumption of sparsity. 

The first type of result is based on the well-established links between GCV on the one hand and Mallows’s Cp and Stein Unbiased 

Risk Estimator on the other hand. The result states that GCV performs as well as Cp or SURE in a regularized or penalized least 

squares problem as an estimator of the prediction error for the penalty in the neighborhood of its optimal value. [Lukas, 2016], 

[Adams, 2021], and [Adams, 2020] investigated the behavior of the optimal values of gamma and rho to identify simple, practical 

rules to choose their optimal properties. RGCV and modified GCV perform significantly better than GCV. The performance is 

defined in terms of the Sobolev error, which is shown by example to be more consistent with a visual assessment of the fit than 

the average squared error. [Devi et al. 2018] discussed UBR and GCV for selecting the optimal knots in the spline. The criteria for 

selecting the best model were based on Mean Squared Error and R-square. The simulation was performed on a spline truncated 

function with error generated from a Normal distribution for varied sample sizes and error variance. The results of the simulation 

study showed that GCV estimates the knots more accurately than UBR. [Xu, 2019] considered nonparametric regression problems 

and developed a model-averaging procedure for smoothing spline regression problems. Model weights were estimated using a 

delete-one-out cross-validation procedure to minimize the prediction error. A simulation study was performed by using a program 

written in R. The simulation study provides a comparison of the most well-known CV, generalized GCV, and the proposed method. 

The model averaging approach is straightforward to implement and gives reliable performances in simulations. 

 

It is clear from the existing literature that the goodness-of-fit of smoothing spline for time series observations has not been 

investigated so far. The paper aimed at presenting a goodness of fit test for time series observation using three classical cubic 

spline non-parametric regression functions.  
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3. Methodology  

This section discussed the methodology applied in this research work.  

 

3.1 Cubic Smoothing Spline Regression Model 

The most common example of the smoothing spline is the cubic spline; it is the smoothing spline's functional form and a piecewise 

cubic function that interpolates the dataset and ensures the smoothness of the observation. It is piecewise third-request 

polynomials that go through a bunch of focuses. It has a nonstop first and second subordinate with the request for the coherence 

of (d–1), where d is the polynomial degree. The Model with shortened force premise work b(x) changes the factors Xi by applying 

a premise work b(x) and fits a model utilizing these changed factors, which adds non-linearity to the model and empowers the 

splines to fit smoother and adaptable Non-straight capacities. The spline smoothing model is written as follows; 

 

𝑦𝑖 = 𝑓(𝑡𝑖) + 𝜀𝑖                                                                                                                                              (1) 

Where; 𝑦𝑖 is the response variable, 𝑓 is an unknown smoothing function, 𝑡𝑖 is the independent/predictor variable and 𝜀𝑖 is zero 

means autocorrelated stationary process?  

The general cubic spline function is given as; 

𝑓(𝑡) =  𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑 + 𝜀                                                                                                                    (2) 

Where; 𝑎, b, c, and d = real number coefficients and 𝑎 ≠ 0, t = independent variable, 𝜀 = error term, and d.f. = k-d-1 (k = number 

of knots and d = degree of cubic spline) 

The cubic spline smoothing estimate function is 𝑓 while; 𝑓 refers to the minimizer of a twice differentiable function of;  

𝑆(𝑓)  =  ∑(𝑦𝑖  −  𝑓(𝑡𝑖))
2
 +  𝜆 ∫ (𝑓′′(𝑡))

2
𝑑𝑡                                                                                                                                                                (3)

𝑏

𝑎

𝑛

𝑖−1

 

Where;  

• 𝜆 > 0 is a smoothing parameter, 

• The initial part in equation (3) refers to the residual sum of the square for the integrity of the information's attack. 

• The roughness penalty in the subsequent term of equation (3) is enormous when the incorporated second subsidiary of a 

regression function 𝑓′′(𝑡) is likewise huge  

• If λ moves toward 0, then 𝑓(𝑡) only interpolates the data set. 

• If λ is very big, then 𝑓(𝑡) would be chosen wherefore 𝑓′′(𝑡) is wherever 0, which will suggest a, by and large, direct least-

squares fit the perceptions. 

If 𝑓(𝑡) values are fixed at 𝑓(𝑡1), . . . . , 𝑓(𝑡2) the roughness ∫ (𝑓′′(𝑡))
2
𝑑𝑡

𝑏

𝑎
 is minimized by a natural cubic spline, this solution is 

written as a basic function as; 

𝑓(𝑡) =  𝛽0 + 𝛽1𝑓1(𝑡)+ . . . + 𝛽𝑛+3𝑓𝑛+3(𝑡) 

 

3.2 Generalized Cross-Validation (GCV) Estimation Method with an Autocorrelation Structure 

The term Generalized Cross-Validation (GCV) was proposed by [Wahba, 1997] and [Craven, 1997] as a replacement for Cross-

Validation (CV); it is the most popular method for choosing the complexity of statistical models. The basic principle of cross-

validation is to leave the data points out one at a time and to choose the value of λ under which the missing data points are best 

predicted by the remainder of the data. To be precise, let 𝑔𝜆
−1 be the smoothing spline determined from all the information set 

aside from (𝑡𝑖 , 𝑦𝑖), utilizing the worth λ for the smoothing boundary. The cross-validation decision regarding λ can then be the 

estimation of λ which can be written as; 

                                  𝐶𝑉(𝜆)  =
1

𝑛
∑{𝑦𝑖 − 𝑔̂(𝑡𝑖)}

2                                                                                                                                                                    (4) 

Equation (4) is similar to the test for regression model estimation [16]. Define a matrix A (λ) by; 

                                𝐴𝑖𝑗(𝜆)  =  𝑛−1𝑔(𝑡𝑖 , 𝑡𝑗)                                                                                                                                                                                 (5)

  

                                 𝐶𝑉(𝜆) =
1

𝑛
∑

{𝑦𝑖−𝑔̂(𝑡𝑖)}
2

{1−𝐴𝑖𝑖(𝜆)}2
𝑛
𝑖=1                                                                                                                                                                           (6)                  

Wang, Meyer & Opsomer (2013) also proposed the application of a related test, referred to as the Generalized Cross-validation, 

acquired from equation (6) by substituting 𝐴𝑖𝑖(𝜆) with its mean value, 𝑛−1𝑡𝑟𝐴(𝜆), this gives the score. 

                           𝐺𝐶𝑉(𝜆) =
𝑛−1𝑅𝑆𝑆(𝜆)

(1−𝑛−1𝑡𝑟𝐴(𝜆))2
                                                                                                                                                                                  (7)                                             

 

Where; RSS (λ) refers to the residual sum of squares. [Craven, 1979] also gave hypothetical contentions to prove that GCV ought 

to pick an ideal estimation of λ in the function of minimizing the mean squared error (MSE) at the design points. The forecast 

published practical examples bear out a good performance in [Xiang, 1998]. The summed-up Cross-validation technique is notable 

for its optimal qualities [Wahba, 1990]. For any given 𝑛 ×  𝑛, the impact matrix is given as; 
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[
 
 
 
 
 
 
𝑓𝑛 , 𝜆(𝑡1)

𝑓𝑛, 𝜆(𝑡2)
.
.
.

𝑓𝑛, 𝜆(𝑡𝑛)
 ]

 
 
 
 
 
 

 =𝑆(𝜆)𝑦, therefore W0 (λ) can be revised as;                                          (8) 

   where;              𝑊0(𝜆)  =  
∑ (𝑎𝑘𝑗𝑦𝑗− 𝑦𝑘)

2𝑛
𝑘=1

(1−𝑎𝑘𝑘)2
                                                                                                                                                                         (9) 

 

Generalized Cross-Validation is the changed type of Cross-Validation, a customary method for assessing the smoothing boundary. 

The GCV score is built by correlation with the CV score, which is gotten from the normal residuals by dividing them by1 −  (𝑆𝜆)𝑖𝑖 . 

The acknowledged arrangement of GCV is to replace the documentation 1 − (𝑆𝜆)𝑖𝑖 in Cross-Validation with a mean score of 1 −

 𝑛−1 follow(𝑆𝜆). Consequently, by adding the residual squared and notation {1 − n−1 trace (Sλ)}2, by the known conventional cross-

approval, the GCV smoothing technique is composed numerically as; 

𝐺𝐶𝑉(𝜆) =  
1

𝑛
 

∑ {𝑦 −  𝑓𝑘(𝑥1)}
2𝑛

𝑘=1

{1 −  𝑛−1𝑡𝑟𝑎𝑐𝑒(𝑆𝜆)}2
                                                                                                                                                                                    (10) 

 

𝐺𝐶𝑉(𝜆)  =
𝑛−1‖(𝐼 − 𝑆𝜆)𝑦‖2

[𝑛−1𝑡𝑟𝑎𝑐𝑒(𝐼 −𝑆𝜆 )]2
                                                                                                                                                                                                    (11)  

 

Where; n is observations or data set, λ is the smoothing parameter, Sλ refers to the ith diagonal member of the smoothing matrix    

The first research on cross-validation was conducted by [Wahba, 1975], which was subsequently augmented to the log 

periodogram's smoothing [Wahba, 1980]. The term Generalized Cross-Validation (GCV) was determined by [Wahba, 1975]. The 

GCV score figured by similarity to the CV score can be obtained from the normal residuals by isolating them by 1 − (𝑆𝜆)𝑖𝑖. The 

essential plan of GCV is to supplant the components 1 −  (𝑆𝜆)𝑖𝑖 with the mean score 1 −  𝑛 − 1 𝑡𝑟(𝑆𝜆). Consequently, adding the 

squared revised remaining and factor {1 −  𝑛 − 1 𝑡𝑟(𝑆𝜆)}. Given the spline smoothing for non-parametric assessment of a relapse 

work in a period series setting and accepting that the reaction variable 𝑦𝑖 are taken on the occasion 𝑡𝑖, for 𝑖 =  1, . . . , 𝑛 and that a 

model of the structure creates the 𝑦𝑖 

                                    𝑦𝑖  =  𝑓(𝑡𝑖) +  𝑍(𝑡𝑖)                                                                                                                                                                              (12)                                                                                                                      

Where 𝑓(. ) refers to the smoothing function and 𝑍(𝑡𝑖) refers to the zero-mean, Autocorrelated stationary process. It can be said 

that even though ti is specific, it is not uniformly spaced, with t1 < . . . < tn 

If the 𝑍(𝑡𝑖) in (12) has a known correlation function, with𝐶𝑜𝑣𝑍(𝑡1, . . . , 𝑡𝑛) = 𝜎2𝑣𝑖𝑗,a normal addition of the usual smoothing spline 

approach amongst is to estimate f by the 𝑓which minimizes;                

(𝑦 −  𝑓)
𝑇
𝑊(𝑦 −  𝑓)  +  𝜆 ∫ {𝑓′′(𝑡)}2𝑑𝑡

𝑏

𝑎

                                                                                                                                                                          (13) 

Amid every properly smoothed function f, it is confirmed that 𝑊 =  𝑉 − 1 =  [𝑣𝑖𝑗], 𝑦 =  (𝑦1, . . . , 𝑦𝑛)𝑇 and 𝑓 =  (𝑓(𝑡1), . . . , 𝑓( 𝑡𝑛))𝑇. 

It has been proven that the function  𝑓 remains a natural cubic spline that has knots at the tj. Also, if 𝑓 denotes the vector with the 

ith element 𝑓(𝑡𝑖) then there is a matrix Sλ such that𝑓  =  𝑆(𝜆𝑦), i.e. for fixed λ, the estimate is a direct capacity of y. This linearity 

proposes a nearby association between spline smoothing and bit smoothing, as shown unequivocally in [22]. One approach to 

picking the parameter denoted by λ is for the generalized cross-correlation to be minimized [Craven, 1978]. In the current setting, 

the common extension of this model is to limit equation (13); this gives a technique for assessing g within sight of a realized 

autocorrelation structure. Concerning span assessment of g, the Bayesian assumption presented by [Silverman, 1984] extends with 

the connection network, and V is replaced by Silverman's inverse inclining weighting lattice, which presents the posterior difference 

matrix, written as;  

 

𝑉𝑎𝑟(𝑓)  = 𝜎2𝐴(𝜆)𝑉                         (14)                                                                                                        

 The minimization of GCV (λ) as proposed by [Wahba, 1983] and [Diggle, 1998] is written as;                                                                                                                          

                   𝐺𝐶𝑉(𝜆)  =  
(𝑦 − 𝑓̂)

𝑇
𝑊(𝑦 − 𝑓)

[𝑡𝑟𝑎𝑐𝑒(𝐼 − 𝑆𝜆)]2
                                                              (15) 

Where; (𝑆𝜆) is the 𝑖𝑡ℎ diagonal element of the smoother matrix, 𝑊 =  𝑉 − 1 =  [𝑣𝑖𝑗], the correlation function, y is  (𝑦𝑖 , . . . , 𝑦𝑛)𝑇, 𝑓 =

 (𝑓(𝑡1) , . . . , 𝑓(𝑡𝑛))𝑇                     

 

3.3 Generalized Maximum Likelihood (GML) Estimation Method with Autocorrelation Structure 

Yuedong (1998) proposed the GML technique for correlated data that possesses a single parameter for smoothing observations. 

However, there exist two parameters for smoothing in the case of a bivariate model that should be assessed along with the 

covariance boundaries. Following a comparative determination, GML is given as; 
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𝐺𝑀𝐿(𝜆)  =  
𝑦ᴵ(𝐼 −  𝑆𝜆)

[𝑑𝑒𝑡+(𝐼 − 𝑆𝜆 )]
1

𝑛−𝑚

                                                                                                                                                                                            (16) 

 

Where; det+ (𝐼 −  𝑆𝜆) refers to the product of (𝑛 −  𝑚) non-zero eigenvalues of (𝐼 −  𝑆𝜆). [Yuedong, 1998] provided a Bayesian 

model for the GML method's general framework and can calculate a spline estimate's posterior confidence intervals. Suppose that 

the data are simulated via the; 

 

                  𝑦𝑖 = 𝑓(𝑡𝑖) + 𝜀𝑖 , 𝑖 =  1,2, . . . , 𝑛,                            𝑡𝑖𝜖[0,1]                                                                                                                          (17) 

 

Where; ∈= (∈1, . . . , ∈𝑛)~𝑁(0, 𝜎2,𝑊−1) which do not dependent on f, Model (17) is usually referred to as a Bayesian model; it can 

also be known as a hierarchical model or a mixed-effects model. This Bayesian model is similar to the model illustrated by [19], 

though the residuals are correlated. Based on the justification of [19], it can be shown that; 

lim
𝑛→∞

𝐸(𝑓(𝑡)/𝑦) = 𝑓𝑡 𝑎𝑛𝑑 𝑙𝑖𝑚
𝑛→∞

𝑐𝑜𝑣(𝑓/𝑦) = 𝜎2,𝑊−1                    (18) 

Where; 𝐹 =  (𝐹 (𝑡1). , . . , 𝐹(𝑡𝑛))’and𝜎 → ∞  expanded prior are estimated for polynomial coefficients with degrees smaller than m.  

According to [Yuedong, 1998], the covariance matrix W-1 relies on several correlations with a parameter vector of𝜏. Interestingly, 

covariance structures refer to first-order autoregressive for time-series observation, structured symmetry or unstructured for 

repeated measurements, and spatial data. GML with Autocorrelation structure is therefore given by; 

 

     𝐺𝑀𝐿(𝜆)  =  
𝜆ᴵ𝑊(𝐼 − 𝑆𝜆)

[𝑑𝑒𝑡+𝑊(𝐼 − 𝑆𝜆)]
1

𝑛−𝑚

                                                                                                                                                      (19) 

Where;  

𝑑𝑒𝑡+(𝐼 − 𝑆𝜆) is the product of the 𝑛 –  𝑚 nonzero eigenvalues of (I – Sλ), λ is the Smoothing parameter, 𝑊 is the structure of the 

correlation, 𝑆𝜆 is the smoother matrix diagonal elements, 𝑛 = 𝑛1  +  𝑛2 are the pair of observations, and 𝑚 = the number of zero 

eigenvalues. 

 

3.4 Unbiased Risk (UBR) Estimation Method with Autocorrelation Structure 

Unbiased Risk is also known as Mallow’s CP criterion; it was developed by [Mallows, 1973] to evaluate the regression model fit 

dependency on Ordinary Least Square (OLS). It is used to estimate choice situations where explanatory variables can predict a few 

results and locate the best model associated with the subset of independent variables. The more modest the estimation of the Cp, 

the generally exact it is; the Cp is written numerically as; 

 

𝑈𝐵𝑅 (𝜆)  =
 ‖(𝑆𝜆 − 𝐼)𝑦‖2

𝑡𝑟(𝐼 − 𝑆𝜆)
                                                                                                                                                                                                             (20) 

Yuedong (1998) provides the UBR technique that can be used effectively to choose a smoothing parameter for cubic spline 

smoothing that possesses non-Gaussian information. It was developed by using Predictive Mean Square Errors (PMSE).   

The Unbiased Risk with Autocorrelation structure can be written mathematically as; 

 

𝑈𝐵𝑅(𝜆)  =  

1

𝑛
‖𝑊

𝑘
2(𝐼 − 𝑆𝜆)𝑦‖

2

[1𝑛𝑡𝑟𝑎𝑐𝑒(𝑊𝑘−1(𝐼 − 𝑆𝜆))]
2 k = 0, 1, 2                                                                           (21) 

Where; n is the measurement/observations {𝑥𝑖, 𝑦𝑖}, W is the Autocorrelation structure, λ is the parameter used for smoothing, and 

𝑆𝜆 is the matrix smoother of the 𝑖𝑡ℎ diagonal member.  

 

3.5 Proposed Smoothing Method (PSM) with Autocorrelation Structure 

A smoothing spline model is usually written as: 

                                                       
  iii xfy 

                                                                                                                 (22) 

 

Where; y refers to the response variable, x refers to a predictor variable, f is the Regression function and 𝜀𝑖  ~ 𝑁(𝑁(0, 𝜎𝑊−1)).  

There are several options to examine whenever model (22) is used for non-linearity; it incorporates observation change and adds 

substance items, for example, cubic spline and Spline smoothing. This research work is keen on spline smoothing because it 

examines non-linearity dependent on regression bend by presenting a wrinkle or twists in these crimps created by pivot work, and 

the place of the turn on the fit is called hitches.  

The traditional regression analysis's primary purpose is to minimize the residual sum of squares (RSS); the model with the minimum 

RSS is the preferred model. It is important to note that [Wahba, 1979] proposed Cross-Validation (CV) as a technique for estimating 

Spline Smoothing. Instead of RSS in the customary straightforward, simple regression, the residual is characterized  
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In this manner, an improved spline smoothing technique is proposed by adding the weighted parameters k and k − 1 with the 

other properties and qualities of the UBR and GCV [Adams, 2009] and [Adams, 2019]. The combination of the two smoothing 

methods' quantities will result in the optimal performance of smoothing methods whose model does not overfit time-series 

observations. The minimizer is the Proposed Smoothing Method (PSM) with autocorrelation structure given as; 

 

PSM = (k) overfitting and optimal knot detector + (1 − 𝑘) best for forecasting non-Gaussian data 

𝑃𝑆𝑀 (𝜆) = 𝑘
(𝑦 −  𝑓)

𝑇
𝑊(𝑦 − 𝑓)

[𝑡𝑟𝑎𝑐𝑒(𝐼 −  𝑆𝜆)]2
 + (1 − 𝑘)

1

𝑛
‖𝑊

𝑔
2 (𝐼 − 𝑆𝜆)‖

2

[
1

𝑛
𝑡𝑟𝑎𝑐𝑒{𝑊𝑔−1(𝐼 − 𝑆𝜆 )}]

2                                                                                                              (23) 

The behavior of the minimized λ in UBR and GCV techniques under the alternate value of g = 1 as the optimum value of PSM 

yields;  

𝑃𝑆𝑀 (𝜆) = 𝑘
(𝑦 − 𝑓)

𝑇
𝑊(𝑦 − 𝑓)

[𝑡𝑟𝑎𝑐𝑒(𝐼 − 𝑆𝜆 )]2
 + (1 − 𝑘)

1

𝑛
‖𝑊

1
2 (𝐼 − 𝑆𝜆)‖

2

[
1

𝑛
𝑡𝑟𝑎𝑐𝑒{𝑊(𝐼 − 𝑆𝜆 )}]

2                                                                                                                    (24) 

The proposed method for estimating f is given in (27) subject to the condition that 0 < 𝑔 < 1 is chosen, using the algorithm in 

section 3.6. (Adams et al., 2020). 

Where; n is the number of the dataset, k is the weighted value, 0 < 𝑘 < 1, W = V-1 = Correlation Matrix for the error term, y = (y1, 

. . . ,yn)T  is the Smoothing function, 𝑓  =  (𝑓(𝑡1).  .  . 𝑓(𝑡𝑛)). 𝑦𝑛)𝑇 = Sλy, Sλ is the diagonal member of the smoothing matrix, 

‖𝑊
1

2
 (𝐼 − 𝑆𝜆)𝑦‖= norm of the Euclidean vector 𝑊

1

2(𝑦 − 𝑓). 

 

3.6 Proposed Smoothing Method (PSM) Algorithm 

Step 1: Read the simulated sample data(𝑥𝑖 , 𝑦𝑖) for i = 1 – T and for each of the si' determine the 

             Pre-selected smoothing parameters𝜆1 , .  .  . , 𝜆𝑡, calculate the respective set of smoothing 

 Spline estimates 𝑓(𝜆) =  {𝑓𝜆1 , . . . , 𝑓𝜆𝑡   }   

Step 2: For the given λ, σ, and T, use the data in 1 above to fit a curve and the estimate ahead by 

              linear extension 𝑓(𝑥𝑖) and 𝑓(𝑥𝑖) 

Step 3: Insert the weighted value (k) of the coefficients of GCV and UBR 

Step 4: Obtain the predictive mean square error 𝑃𝑀𝑆𝐸 (𝑓𝜆) =  ∑ [(𝑓(𝑥)  −  𝑓(𝑥𝑖)))
2
]𝑡

𝑖 = 1  for 

 these points  

Step 5: add all values of PMSEs to get the resulting PSM value for the given λ and ρ. 

Step 6: Repeat steps 1–5 for 1000 times. 

 

3.7 Monte Carlo Simulation study 

This part is concerned with the outcome of a Monte Carlo simulation study. This study was led to assess the achievement of the 

four smoothing techniques depicted in this research, for example, GML, GCV, UBR, and PSM. The dataset was generated by 

applying a program written in R (version 3.2.3) for time-series sample sizes of; 20, 60, and 100. The experiment was replicated at 

1,000 for every one of the examples. The Predictive Mean Squared-Errors (PMSE), adjusted R-Square and predicted R-square was 

utilized to assess the smoothing techniques' quality and performance for each simulated data.  

 

3.8 Equation used to generate the value in the data 

The data generation study performed to assess and measure the performance of the four spline smoothing methods is given as;  

                 𝑦(𝑡)  = 2𝑆𝑖𝑛 (
𝜋

𝑡
)  + 𝜀𝑡     t = 20, 60, and 100                                                                                        (25) 

Where;  = 1800, 𝜀𝑡  ~ 𝑁(0, 𝜎𝑊−1), a first-order autoregressive process AR (1) with a mean of 0, a standard deviation of 0.8, and 

autocorrelation levels (ρ) of 0.2, 0.5, and 0.8 with a 95% confidence limit, Note that; 𝑒𝑡 =  𝜌𝜀𝑡−1 + 𝑣𝑡 and 𝑣𝑡~𝑁(0, 𝜎2) 

 

3.9 Experimental design and data generation 

The experimental design adopted in this study is;  

• Three-time-series samples (T) of 20, 60, and 100 were considered in the data generation 

• Three autocorrelation levels were considered, i.e.  ρ = 0.2, 0.5 and 0.8 

• One standard deviation value was considered, i.e. 𝜎 =  0.8 

• The dataset was simulated for 1,000 replications in each of the 3 x 3 x 4 x 1 = 36 combinations for cases T’s, ρ’s, λ’s, and 

σ’s. 

 

All the selected parameters in the experimental design are similar to the ones used in [33]. 
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3.10 Smoothing Spline Assessment methods used in this Study 

Efforts were made in this study to examine and compare the strength of the four spline smoothing estimators, namely; Generalized 

Cross-Validation (GCV), Unbiased risk (UBR), Generalized Maximum Likelihood (GML), and the Proposed Smoothing Method (PSM) 

developed by taking the weighted hybrid of GCV and UBR. 

 

(i) Predictive Mean Square Error 

A comparison was made to test the four estimation methods' effect and performance in the presence of autocorrelation error. An 

estimate of the four smoothing methods, the criterion, effect, and performance of different autocorrelation errors of the four 

estimation methods (i.e. Generalized Crossed Validation (GCV), Generalized Maximum Likelihood (GML), Proposed Smoothing 

Methods (PSM) (0 < k < 1) and Unbiased Risk (UBR)) were performed using codes written in R-console. Four different estimation 

methods were used, i.e. GCV (V), GML (M), PSM (0 < k < 1), and UBR (U). This data generation was carried out for V, M, P, and U. 

At the same time, the Evaluation and comparison of the Four (4) Spline Smoothing estimation methods were investigated by 

applying the asymptotic sampling qualities of the criterion given as; Mean Square Prediction Error (MSPE). 

 

The Predictive Mean squared error (PMSE) of a smoothing curve or model fitting process, according to (Mallows et al. 1973), is the 

difference between the expected value of the square difference of the fitted value, that is; function 𝑓(𝑥𝑖) and the observed value 

estimate is given as the function 𝑓(𝑥𝑖). It is utilized to estimate the performance and attributes of smoothing methods like Cross-

Validation, Generalized Cross-Validation, and Generalized Maximum Likelihood, etc. The Predictive Mean Square Error (PMSE) is 

written numerically as;  

 

𝑃𝑀𝑆𝐸(𝜆) =  𝐸 [∑(𝑓(𝑥𝑖) − 𝑓(𝑥𝑖))

𝑛

𝑖=1

2

]                                                                                                                                                                              (26)  

 

The Predictive Mean Square Error is usually separated into two parts; the initial part is the sum of square biases of the fitted 

qualities, and the other part is the number of changes in the fitted observations. 

 

Where; 

𝑓(𝑥𝑖)  = observed value 

𝑓(𝑥𝑖) = predicted or estimated value 

At each scenario of specification, for instance, say, time-series size (T) = 20, autocorrelation level (ρ) = 0.2, d.f = 1, and standard 

deviation (σ) = 0.8, the smoothing methods were tested and compared using the asymptotic properties of the estimators based 

on the PMSE criterion. 

 

(ii)Test for Over-fitting in Spline Smoothing  

In statistics, overfitting occurs when a model fails to fit extra information or neglects to anticipate future perceptions reliably. PRESS 

and Predicted R-square are the best and easiest ways to discover overfitted in smoothing methods and models. The result may be 

interpreted by simply comparing the predicted R-Square to the normal R-Square and observing if there exist a great difference 

between the two test techniques. If there is a large difference between the two values, the model doesn’t predict new observations 

and fits the true data, and there is the possibility of overfitting the model. Overfit model has too many numbers and terms and 

begins to fit the random noise in the sample; it is not possible to predict random noise. The Predictive R-square is a statistical 

technique that determines how well a model predicts a response for new observation. It is something of an in-house cooked 

measure, which is computed by effectively eradicating each variable from the data set, estimating the regression model, and 

deciding how suitable the model forecasts the removed variables. Predictive R-square is usually written mathematically as; 

 

𝑃𝑟𝑒𝑑. 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 = (1 −
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑃𝑅𝐸𝑆𝑆)

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑜𝑡𝑎𝑙
) × 100                                                                                            (27) 

While R-square, also known as the coefficient of determination, can be derived through;  

𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 =  (1 −
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑒𝑟𝑟𝑜𝑟

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡𝑜𝑡𝑎𝑙
)                                                                                                                                                                 (28) 

 

 

(iii) Test for Goodness-of-fit for the Smoothing Methods 

The goodness-of-fit of the smoothing methods explains how well the methods fit the simulated and real-life data. It also 

summarizes the differences between the observed value and predicted or estimated values. The Adjusted R-square was used to 

determine the best-fit smoothing methods. It is written mathematically as; 
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𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 =  (1 −
(1 − 𝑅𝑠𝑞𝑢𝑎𝑟𝑒) × (𝑛 − 1)

𝑛 − 𝑝
)                                                                                                                                         (29) 

Where; n = several observations and p = many parameters. 

 

4. Results and Discussion  

Table 1-3 presents the summary fit result of the smoothing spline regression model and the model performance criteria, i.e. the 

PMSE, multiple R-square, adjusted R-Square, and predicted R-square based on time-series periods (T=60), four degrees of 

smoothing (D.S.=1, 2, 3 and 4) and autocorrelation level (ρ = 0.5). It was revealed from the result that all the coefficients of the 

smoothing methods’ parameters were significant at (P-value <0.001, <0.01, and < 0.05). 

 

The PMSE of the four smoothing techniques indicated that; the Proposed Smoothing Method (PSM = 0.18) had the smallest PMSE 

of 0.757980 at T = 60, D.S. = 2, and ρ=0.5. This was closely followed by UBR with PSME of 1.017353 at T = 60, D.S. = 2, and ρ = 

0.5, then GML with PSME of 1.300494 at T = 60, D.S. = 2, and𝜌 = 0.5. The result implies that; the Proposed Smoothing Method 

(PSM = 0.18) performs better than the other smoothing methods at a time series size (T =60) and rho = 0.5. 

 

The adjusted R-Square result showed that the Proposed Smoothing Method (PSM = 0.18) had the largest values of 0.8095 at T = 

60, D.S. = 2, and ρ=0.5, which is closely followed by the Proposed Smoothing Method (PSM = 0.20) with the value of 0.7879 when 

T = 20, D.S. = 2 and ρ=0.5, then GCV smoothing method with 0.7828 at T = 60, D.S. = 2 and𝜌 = 0.5. It can be inferred from the 

result above that; the Proposed Smoothing Method (PSM = 0.18) provides the best fit to the time-series observations at a time-

series size (T = 60) and rho = 0.5. 

 

It can be seen from the result presented in Table 1-3 that the difference between the Multiple R-square and predictive R-square 

of the Proposed Smoothing Method was the least when compared to the other smoothing methods. At T = 60, D.S. = 1, 2, 3, and 

4,𝜌 = 0.5, the differences between the Multiple R-Square and predictive R-square were 0.3669, 0.0364, 0.4599, and 0.1759, 

respectively. This result shows that the Proposed Smoothing Method does not overfit the time series observations when the time-

series size of 60 and rho = 0.5. 

 

Table 1: Simulation Result for Smoothing Spline Regression Model of GML, GCV, PSM, and UBR for T=20, and ρ = 0.2, 0.5 

Conditions Smoothing 

Methods 

𝛽𝑖 Smoothing 

Parameter 

Selection criteria 

PMSE R Square Adj. R 

Square 

Pred. R Square 

T = 20,  𝜌 =
0.2 

 

GML 𝛽0 = 0.5596 

𝛽1 = 5.9713** 

𝛽2 = -23.5218* 

𝛽3 17.3125** 

0.04384406 1.34165 

 

 

 

0.6663 0.6037 0.000 

T = 20 𝜌 = 0.2 

 

 

GCV 

 

𝛽0 = -0.2034 

𝛽1 = 14.7471** 

𝛽2 = -42.272*** 

𝛽3 = 27.8714*** 

0.000105860

4 

0.956241 

 

 

 

0.6884 0.6299 0.0009 

T = 20 𝜌 = 0.2 

 

UBR 

 

𝛽0 = -0.1656 

𝛽1 = 9.2593 

𝛽2 = -25.7615* 

𝛽3 = 16.5350* 

0.06503716 2.59853 

 

 

 

0.5401 0.4538 0.000 

T = 20, 𝝆 =
𝟎. 𝟐 

 

PSM (K 

=0.04) 

𝜷𝟎 = -0.1376 

𝜷𝟏 = 12.0791*** 

𝜷𝟐 = -35.2248*** 

𝜷𝟑 = 234056*** 

0.06243990 0.046857 

 

 

 

0.9678 0.9618 0.6428 

T = 20, D.S. = 

4, 𝜌 = 0.5 

 

GML 𝛽0 = 0.1047 

𝛽1 = 11.7009*** 

𝛽2 = -36.7510*** 

𝛽3 = 25.1998*** 

0.02464804 1.47087 

 

 

 

0.7143 0.6608 

 

0.0009 

T = 20, D.S. = 

4, 𝜌 = 0.5 

 

 

GCV 

 

𝛽0 = 0.1513 

𝛽1 = 9.9033** 

𝛽2 = -30.5509*** 

𝛽3 = 20.5665*** 

0.00012548 1.437364 

 

 

 

0.7653 0.7213 0.020 

T = 20, D.S. = 

4, 𝜌 = 0.5 

 

UBR 

 

𝛽0 = -0.1341 

𝛽1 = 10.1868*** 

𝛽2 = -31.8230*** 

𝛽3 = 21.9838*** 

0.2490225 1.14616 

 

 

 

0.7363 0.6868 0.0013 
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T = 20, D.S. = 

4, 𝜌 = 0.5 

 

PSM (K 

=0.16) 

𝛽0 = -0.3008 

𝛽1 = 10.4908*** 

𝛽2 = -28.9898*** 

𝛽3 = 18.8467*** 

0.20919897 

 

1.794844 

 

 

 

0.8802 

 

0.8577 0.742 

T = 20, D.S. = 

4, 𝜌 = 0.8 

 

 

GML 

𝛽0 = 0.3308 

𝛽1 = 9.6598 

𝛽2 = -32.6249* 

𝛽3 = 23.2359** 

0.0150933 2.16225 

 

 

 

0.5406 0.4545 0.000 

T = 20, D.S. = 

4, 𝜌 = 0.8 

 

 

GCV 

 

𝛽0 = 0.5529 

𝛽1 = 8.6756 

𝛽2 = -30.8329 * 

𝛽3 = 21.8131** 

0.0006287 

 

2.188967 

 

 

 

0.6508 0.5854 0.122 

T = 20, D.S. = 

4, 𝜌 = 0.8 

 

 

UBR 

 

𝛽0 = 0.02747 

𝛽1 = 13.26481** 

𝛽2 = -42.53308*** 

𝛽3 = 30.18391*** 

0.6178076 2.49091 

 

 

 

0.7091 0.6545 0.000 

T = 20, D.S. = 

4, 𝜌 = 0.8 

 

 

PSM (K 

=0.28) 

𝛽0 = -0.04164 

𝛽1 = 10.37883* 

𝛽2 = -32.14938** 

𝛽3 = 21.52423** 

0.44499741 

 

1.483121 

 

 

 

0.7442 0.6962 0.3567 

 

 

Table 2: Simulation Result for Cubic Spline Regression Model of GML, GCV, PSM,` and UBR for T=60, and ρ = 0.2 

Parameters Smoothing 

Methods 

𝛽𝑖 Smoothing 

Parameters 

Selection criteria 

PMSE R Square Adjusted R-

Square 

Pred. R –Square 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

GML 𝛽0 = -0.02920 

𝛽1 =10.77812*** 

𝛽2 = -31.19231*** 

𝛽3 = 21.57675*** 

0.001546984 3.615946 

 

 

 

0.9478 0.945 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

 

GCV 

 

𝛽0 = -0.14492 

𝛽1 = 10.83452*** 

𝛽2 = -31.70387*** 

𝛽3 = 21.11344*** 

6.08904e-05 2.018062 

 

 

 

0.9454 0.9425 0.022 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

UBR 

 

𝛽0 = -0.11607 

𝛽1 = 11.22499*** 

𝛽2 = -33.07054*** 

𝛽3 = 22.13243*** 

0.04321843 3.398581 

 

 

 

0.9553 0.9529 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.2 

 

PSM (K 

=0.08) 

𝛽0 = -0.25494** 

𝛽1 = 12.44873*** 

𝛽2 = -35.69443*** 

𝛽3 = 23.63443*** 

0.039765827 

 

2.416724 

 

 

 

0.9459 0.9422 0.7752 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

GML 𝛽0 = -0.2659 

𝛽1 = 12.3001*** 

𝛽2 = -35.1093*** 

𝛽3 = 23.1599*** 

0.001259269 2.16225 

 

 

 

0.7355 

 

0.7213 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

 

GCV 

 

𝛽0 = -0.2518 

𝛽1 = 12.452*** 

𝛽2 = -36.210*** 

𝛽3 = 25.1076*** 

9.37482e-05 2.188967 

 

 

 

0.7384 0.7453 0.021 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

UBR 

 

𝛽0 = -0.3808 

𝛽1 = 13.5769*** 

𝛽2 = -38.1391*** 

𝛽3 = 25.0224*** 

0.02952382 2.49091 

 

 

 

0.7791 0.7672 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.5 

 

PSM (K 

=0.20) 

𝛽0 = -0.2591 

𝛽1 = 11.4306*** 

𝛽2 = -32.4205*** 

𝛽3 = 21.5264*** 

0.023637806 

 

1.733162 

 

 

 

0.7879 0.7766 0.612 

T = 60, D.S. = 

4, 𝜌 = 0.8 

 

GML 𝛽0 = 0.1528 

𝛽1 = 10.3817*** 

𝛽2 = -32.6398*** 

0.001038157 2.996486 

 

 

0.5791 0.5565 0.000 
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𝛽3 = 22.4550***  

T = 60, D.S. = 

4, 𝜌 = 0.8 

 

 

GCV 

 

𝛽0 = 0.1035 

𝛽1 = 8.5890*** 

𝛽2 = -25.6512*** 

𝛽3 = 16.6920*** 

9.757026e-05 1.456264 

 

 

 

0.5882 0.5661 0.010 

T = 60, D.S. = 

4, 𝜌 = 0.8 

 

UBR 

 

𝛽0 = -0.5286 

𝛽1 = 15.0744*** 

𝛽2 = -41.1956*** 

𝛽3 = 22.2068*** 

0.05817642 2.564013 

 

 

 

0.5723 0.5494 0.000 

T = 60, D.S. = 

4, 𝜌 = 0.8 

 

PSM (K 

=0.32) 

𝛽0 = 0.4314 

𝛽1 = 8.4836** 

𝛽2 = -30.6451*** 

𝛽3 = 22.0310*** 

0.039591188 

 

1.0654 

 

 

 

0.6401 0.6208 0.433 

 

Table 3: Simulation Result for Cubic Spline Regression Model of GML, GCV, PSM, and UBR for T=100, and ρ = 0.2 

Parameters Smoothin

g 

Methods 

𝛽𝑖 Smoothing 

Parameters 

Selection criteria 

PMSE R Square Adjusted R-

Square 

Pred. R –Square 

T = 100, 

D.S. = 4, 

𝜌 = 0.2 

 

GML 𝛽0 = -0.12003* 

𝛽1 = 10.88492*** 

𝛽2 = -31.70714*** 

𝛽3 = 21.05287*** 

0.000955618 1.973208 

 

 

 

0.9300 0.9279 0.000 

T = 100, 

D.S. = 4, 

𝜌 = 0.2 

 

 

GCV 

 

𝛽0 = -0.11858 

𝛽1 = 11.47119*** 

𝛽2 =-33.74040*** 

𝛽3 = 22.58175*** 

0.000054114 0.332736 

 

 

 

0.9474 0.9458 0.000 

T = 100, 

D.S. = 4, 

𝜌 = 0.2 

 

UBR 

 

𝛽0 = -0.19474** 

𝛽1 = 11.64251*** 

𝛽2 = -33.84756*** 

𝛽3 = 22.51969*** 

0.02506713 1.337717 

 

 

 

0.9535 0.9521 0.011 

T = 100, 

D.S. = 4, 

𝜌 = 0.2 

 

PSM (K 

=0.12) 

𝛽0 = -0.20195** 

𝛽1 =-12.07546*** 

𝛽2 = -35.23636*** 

𝛽3 = 23.62322*** 

0.022065568 

 

1.207069 

 

 

 

0.9353 0.9333 0.5438 

T = 100, 

D.S. = 4, 

𝜌 = 0.5 

 

 

GML 

𝛽0 = -0.1604 

𝛽1 = 11.3986*** 

𝛽2 = -32.6706*** 

𝛽3 = 21.5384*** 

0.000842476 1.984518 

 

 

 

0.7532 0.7455 0.009 

T = 100, 

D.S. = 4, 

𝜌 = 0.5 

 

 

GCV 

 

𝛽0 = -0.2635 

𝛽1 = 12.6782*** 

𝛽2 = -36.9091*** 

𝛽3 = 24.7118*** 

0.000154404

7 

2.765412 

 

 

 

0.7876 0.7803 0.0112 

T = 100, 

D.S. = 4, 

𝜌 = 0.5 

 

 

UBR 

 

𝛽0 = -0.4740** 

𝛽1 = 14.5119*** 

𝛽2 = -41.2996*** 

𝛽3 = 27.7351*** 

0.02684178 1.815722 

 

 

 

0.7768 0.7698 0.000 

T = 100, 

D.S. = 4, 

𝜌 = 0.5 

 

 

PSM (K 

=0.24) 

𝛽0 =-0.08351 

𝛽1 = 12.12945*** 

𝛽2 = -35.37438*** 

𝛽3 = 23.59913*** 

0.02043681 

 

1.739182 

 

 

 

0.8046 0.7984 0.2133 

T = 100, λ 

= 4, 𝜌 = 0.8 

 

GML 𝛽0 = 0.3072 

𝛽1 = 6.7774*** 

𝛽2 = -24.1129*** 

𝛽3 = 17.3734*** 

0.000746341

7 

0.19754 

 

 

 

0.5267 0.5119 0.000 

T = 100, λ 

= 4, 𝜌 = 0.8 

 

 

GCV 

 

𝛽0 = -.0.09507 

𝛽1 = 13.05444*** 

𝛽2 = -38.07188*** 

𝛽3 = 25.36748*** 

0.000146710

9 

2.6543 

 

 

 

0.6445 0.6333 0.013 
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T = 100, λ 

= 4, 𝜌 = 0.8 

 

UBR 

 

𝛽0 = -0.2412  

𝛽1 = 14.2442*** 

𝛽2 = -38.4952*** 

𝛽3 = 24.5294*** 

0.01991017 

 

1.532589 

 

 

 

0.5904 0.5776 0.071 

T = 100, λ 

= 4, 𝜌 = 0.8 

 

PSM (K 

=0.36) 

𝛽0 = -08702 

𝛽1 = 10.95087*** 

𝛽2 = -33.32863*** 

𝛽3 = 22.61821*** 

0.012795325 

 

0.056745 

 

 

 

0.849 0.8207 0.4532 

 

Figures 1 to 3 below clearly show the comparisons of the behaviors of the cubic smoothing spline selected by GCV, GML, and 

MCP for sample sizes 20, 60, and 100, respectively. It was observed that the observed value of Generalized Cross-Validation was 

closer to the fitted/estimated value when compared to the  

 
Figure 1: Cubic smoothing spline and fitted curve using GCV, GML, UBR, and PSM, (K=0.04) for T = 20, rho = 0.2, 0.5, and 0.8, 

sigma = 0.8 

 
Figure 2: Cubic smoothing spline and fitted curve using GCV, GML, UBR, and PSM, (K=0.04) for T = 60, rho = 0.2, 0.5, and 0.8, 

sigma = 0.8 
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Figure 3: Cubic smoothing spline and fitted curve using GCV, GML, UBR, and PSM, (K=0.04) for T = 100, rho = 0.2, 0.5, and 0.8, 

sigma = 0.8 

 

4.0 Application 

Table 4: Test for autocorrelation for the real-life data in the presence of Autocorrelation 

Box-Ljung test 

data:  Residuals 

X-squared = 96.7395, df = 1,                      p-value < 2.2e-16 

 

H0: The data are independently distributed, or the correlations in the population from which the samples are drawn are zero 

HI: The data are not independently distributed; they have serial correlation 

 

Decision: autocorrelation exists in the model  

Table 5: Stationarity test for the real-life data with smoothing parameters 

Augmented Dickey-Fuller Test 

data:  Residuals 

Dickey-Fuller = -3.6471,               Lag order = 5, p-value = 0.03021 

alternative hypothesis: stationary 

 

H0: The observation is not stationary; there exists a unit root 

HI: The observation is stationary; there is no unit root 

Decision: The data is stationary; there is no unit root 

 

Table 6: Cubic Smoothing Spline regression and Predictive Mean Square Error result for Real-life data  

Smoothing 

Methods 

𝛽𝑖 Df Selection criteria 

PMSE Multiple R-

Square 

Adjusted R 

Square 

Predicted R 

Square 

GML 𝛽0 = 9.046 

𝛽1 = -1.275 

𝛽2= 5.687 

𝛽3= -9.716 

209 

209 

209 

209 

42.77 

 

 

 

0.5997 0.5940 0.102 

 

GCV 

 

𝛽0 = 9006 

𝛽1 = -1.230 

𝛽2= 5.677 

𝛽3= -9728 

209 

209 

209 

209 

45.78 

 

 

 

0.6004 0.5947 0.118 

UBR 

 

𝛽0 = 9.162 

𝛽1 = -1.524 

𝛽2= 5.840 

𝛽3= -9.987 

209 

 209 

209 

209 

92.80 

 

 

 

0.6014 0.5957 0.099 
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PSM (K = 0.04) 𝛽0 = 9.187 

𝛽1 = -1.568 

𝛽2= 5.863 

𝛽3= -1002 

209 

209 

209 

209 

32.934 

 

 

 

0.6021 0.5964 0.4550 

 

Table 6 above presents the predictive mean square error of the real-life data on the standard international trade classification 

(SITC) export and import price indices in Nigeria between 2001 – 2020. It was discovered that the proposed smoothing Method 

(PSM) had the least predictive mean square error (PMSE), a confirmation that it is the preferred smoothing method for simulated 

and real-life data. The result also presented the multiple, adjusted, and predictive R-Square. It can be inferred from the adjusted 

R-square of the proposed smoothing method of 59.6% that it has the best fit among the four smoothing methods. 

 

The plot above presents the smoothing curve of the annual standard international trade classification import price index dataset 

in Nigeria from 1970-2020. The data used for analysis were earlier tested for stationarity and autocorrelation. As can be seen from 

Figure 4, the proposed smoothing method with optimal smoothing parameter λ = 0.062439908 and for weighted value (k =0.04) 

was used to carefully analyze the residuals to try to detect disturbances or errors in the stationary part of the series. It was observed 

that the PSM curve is very close to the real-life data and also provides a good fit.  

 
Fig 4: Smoothing curve of SITC import and Export price index dataset (dark blue) and fitted value (red) with Smoothing Parameters 

Chosen by PSM (0.04). 

 

The plot above presents the smoothing curve of the annual standard international trade classification export price index dataset 

in Nigeria from 1970-2018. The curve presented in Figure 4 indicated that the proposed smoothing method with optimal 

smoothing parameter λ = 0.062439908 and for weighted value (k =0.04) was used to smooth the residuals for disturbances or 

errors in the stationary part of the series. It was observed that the PSM curve is very close to the real-life data and also provides a 

good fit.  

 

5. Conclusion  

The results generated from the simulation and real-life data conducted in this study have provided great insight into the smoothing 

method whose model produces the best fit for the time-series observations, the model whose smoothing method does not over 

fit data, the optimum value of the proposed smoothing method and the performance of the smoothing methods when 

autocorrelation is present in the error term. 

 

The result of the goodness-of-fit test revealed that the proposed smoothing method had the best-fit model among the competing 

smoothing methods on the simulated and real-life data. The proposed smoothing method’s model fitted without any defection 

and shortcoming under cubic spline functional form with the highest adjusted R-Square of 0.9618, at T = 20, D.S. = 4, 𝜌 = 0.2, and 

the weight value of k = 0.04. 

 

The finding on the effect of autocorrelation in the error terms of the four smoothing methods considered in this study showed 

that the proposed smoothing method (PSM) works well for all levels of autocorrelation (ρ = 0.2, 0.5, and 0.8). It also provided a 

better estimate,  proved to be the most preferred smoothing method than the GML, GCV, and UBR, and does not overfit a time 
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series observation with autocorrelation in the error term at a predicted R-square of 0.6218. This result is slightly similar for GML 

with; [Yuedong, 1998] and [Yuedong, 2020] but differs from (Hart et al. 1986). 

The study on the optimum value of the Proposed Smoothing Method (PSM) indicated that the smoothing method performs at an 

optimal level when (k = 0.04) with a predictive mean square error value of 0.046857, multiple R-Square of 0.9678, Adjusted R-

Square of 0.9618 and predictive R-square of 0.6428. 

 

The result on the effect of sample size on the performance of the four smoothing methods shows that the proposed smoothing 

method is computationally more efficient, consistent, and works well at all sample sizes (T = 20, 60, and 100) Monte-Carlo 

experiment. The plots and results presented in Tables and Figures 1 – 4 indicated that; GML, GCV, and UBR showed signs of 

inefficiency for all the time series sizes (T = 20, 60, and 100). This finding is quite different from; [Yuedong, 2000] and [Kim, 2009]. 

The findings from the result also proved the Proposed Smoothing Method (PSM) to be more efficient among the four competing 

smoothing methods for real-life data. This result disagrees with the finding by [Carew, 2003]. 
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