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| ABSTRACT 

Let A be an absolute valued algebra containing a nonzero central algebraic element. Then A is a pre-Hilbert algebra and is finite 

dimensional in the following cases:  

1) A satisfies (𝑥, 𝑥, 𝑥)  =  0. 

2) A satisfies (𝑥2, 𝑥2,  𝑥2)  =  0.  

3) A satisfies (𝑥, 𝑥2, 𝑥)  =  0.  

In these cases A is isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

. It may be conjectured that every absolute valued algebra containing a 

nonzero central element is pre-Hilbert algebra. 
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1. Introduction 

Let A be a non-necessarily associative real algebra which is normed as real vector space. We say that real algebra is a pre-Hilbert 

algebra, if it’s norm ‖. ‖ come from an inner product  (./. ), and it’s said to be absolute valued algebras, if it’s norm satisfies the 

equality ‖ab‖ = ‖a‖‖b‖, for all a, b ∈ A. Note that, the norm of any absolute valued algebras containing a nonzero central 

idempotent (or finite dimensional) comes from an inner product [El − Mallah, 1987] and [El − Mallah, 1980]. In 1947 Albert 

proved that the finite dimensional unital absolute valued algebras are classified by ℝ, ℂ, H and O, and that every finite dimensional 

absolute valued algebra has dimension 1, 2, 4 or 8 [Albert, 1947].  Urbanik and Wright proved in 1960 that all unital absolute valued 

algebras are classified by ℝ, ℂ, H and O [Urbanik, 1960]. It is easily seen that the one-dimensional absolute valued algebras are 

classified by ℝ, and it is well-known that the two-dimensional absolute valued algebras are classified by ℂ, ℂ∗, *ℂ or ℂ
∗

 (the real 

algebras obtained by endowing the space ℂ with the product x ∗ y = x̅y, x ∗ y = xy̅, and  x ∗ y = x̅ y̅  respectively) [Rodriguez, 1984]. 

As main results El-Mallah [El-Mallah, 1990] proved that any absolute valued algebra with a nonzero central idempotent and 

satisfying  (𝑥, 𝑥, 𝑥) = 0 (where (𝑥, 𝑦, 𝑧) = (𝑥𝑦)𝑧 − 𝑥(𝑦𝑧)), is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

. The same 

conclusion is true for any absolute valued algebras with a nonzero central idempotent and (𝑥2, 𝑥2,  𝑥2) =  0 or (𝑥, 𝑥2, 𝑥) = 0 [4] and 

[6]. It is natural to study those absolute valued algebras by replacing the original assumption central idempotent with a weaker 

one central algebraic element, we prove that, if A is an absolute valued real algebra containing a central algebraic element 𝑎 and 

satisfying one of the following identities (𝑥, 𝑥, 𝑥)  =  0, (𝑥2, 𝑥2,  𝑥2) =  0 or (𝑥, 𝑥2, 𝑥) = 0. Then A is finite dimensional and isomorphic 

to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

, this result is an important generalization of a results given in [El-Mallah, 1990], [El-Mallah, 2004] and [Rochdi, 

2009].  

 

In section 2 we introduce the basic tools for the study of absolute valued algebras containing a central algebraic element. We also 

give some properties related to central algebraic elements satisfying some restrictions on commutativity (proposition 2.9, lemma 

2.9 and corollaries 2.10, 2.11), and some conditions imply that such an algebra A is an inner product space. Moreover, section 3 is 
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devoted to classifying all absolute valued algebras with a central algebraic element and satisfying one of the following identities  

(𝑥, 𝑥, 𝑥)  =  0, (𝑥2, 𝑥2,  𝑥2) =  0 or (𝑥, 𝑥2, 𝑥) = 0. The paper ends with the following main results:                                              

Theorem.  Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are 

equivalent

1) A satisfies (𝑥, 𝑥, 𝑥)  =  0,                                                                                                                                                                     

2) A satisfies (𝑥2, 𝑥2,  𝑥2)  =  0,                                                                                                                                                             

3) A satisfies (𝑥, 𝑥2, 𝑥)  =  0,                                                                                                                                                                

4) A is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.      

2. Notation and preliminaries results                                                                                                         

In this paper all the algebras are considered over the real numbers field ℝ.  

 

Definition 2.1 Let B be an arbitrary algebra.                                                                                                                                             

i) B is called a division algebra if the operators Lx and Rx of left and right multiplication by x are bijective for all x ∈ B ∖ {0}.                                                                                                                                                                                                                       

ii) We say that B is algebraic, if for every x in B, the subalgebra B(𝑥) of B generated by x is finite dimensional. 

iii) We mean by a nonzero central element in B, a nonzero element which commute with all elements of the algebra B.                                                                                                                                        

iv) B is called a normed algebra (respectively, absolute valued algebra) if it is endowed with a space norm: ‖ . ‖ such that ‖𝑥𝑦‖ ≤

‖𝑥‖‖𝑦‖ (respectively, ‖𝑥𝑦‖ = ‖𝑥‖‖𝑦‖, for all x, y ∈ B).                                                                                                                                                                                                                      

v) B is called a pre-Hilbert algebra if it is endowed with a space norm that comes from an inner product (./.) such that 

                        (./. ) ∶  B × B ⟶  ℝ 

                                    (x, y) ⟼  
1

4
(‖x + y‖2 − ‖x − y‖2) 

The most natural examples of absolute valued algebras are ℝ, ℂ, H (the algebra of Hamilton quaternion) and O (the algebra of 

Cayley numbers) with norms equal to their usual absolute values [El-Mallah, 1987] and [Urbanik, 1960]. The algebra 

ℂ
∗

  (repectively, H
∗

 and O
∗

) obtained by replacing the product of ℂ (respectively, H and O) with the one defined by x ∗ y = x̅ y̅, where 

x →  x̅ is the standard conjugation of ℂ (respectively, H and O). 

                                                                                                                                                                                                          

We need the following relevant results: 

 

Theorem 2.3 [El-Mallah, 1980] The norm of any absolute valued algebra containing a nonzero central idempotent comes from an 

inner product.                                                  

 

Theorem 2.4 [El-Mallah, 1980] Any absolute valued algebra containing a central idempotent and satisfying (𝑥, 𝑥, 𝑥)  =  0 for all 𝑥 ∈

𝐴 is isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

. 

 

Theorem 2.5 [4] Any absolute valued algebra containing a central idempotent and satisfying (𝑥2, 𝑥2, 𝑥2)  =  0 for all 𝑥 ∈ 𝐴 is 

isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                                                                              

 

Theorem 2.6 [Rochdi, 2009] Any absolute valued algebra containing a central idempotent and satisfying (𝑥, 𝑥2, 𝑥)  =  0 for all 𝑥 ∈

𝐴 is isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                

 

Lemma 2.7 [Urbanik, 1960] If all the elements of a subset B of any absolute valued algebra A commute with each other, then the 

linear hull spanned by B is pre-Hilbert space.    

    

We give some conditions that imply that 𝐴 is an inner product space. 

 

Proposition 2.8 Let 𝐴 be an absolute valued algebra containing a central element 𝑎 and let 𝑥 be a element in 𝐴. If 𝑥 is orthogonal 

to 𝑎 in the inner product space [𝑎, 𝑥], then the following are equivalent: 

1) 𝑥2𝑎2 = 𝑎2𝑥2, 

2) 𝑥2 = −||𝑥||2𝑎2,  

3) 𝐴 is an inner product space. 

Proof. 1) ⇒ 2) Assuming that ||𝑥|| = 1, we have ||𝑥2 − 𝑎2|| =  ||𝑥 –  𝑎||||𝑥 +  𝑎||  =  2. According to Lemma 2.7, we get 𝑥2 = −𝑎2. 

2) ⇒ 1) is clear 

2) ⇒ 3) Let  𝑢 = 𝛼𝑎 + 𝛽𝑥 and 𝑣 = 𝛾𝑎 + 𝛿𝑦 be norm-one elements in 𝐴 where 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℝ and 𝑥, 𝑦 ∈  {𝑎}⊥ such that  ||𝑥|| =

||𝑦|| = 1. According to Schoenberg’s Theorem [14], it is sufficient to show that the inequality ||𝑢 +  𝑣||2 +  ||𝑢 –  𝑣||2 ≥ 4 holds. 

Using Lemma 2.7 and since 𝑥2 = 𝑦2 = −𝑎2, then   

           ||𝑢 +  𝑣||2 +  ||𝑢 –  𝑣||2 =  ||(𝛼 +  𝛾)𝑎 + (𝛽𝑥 +  𝛿𝑦)||2 +  ||(𝛼 −  𝛾)𝑎 + (𝛽𝑥 −  𝛿𝑦)||2                                                                                                            
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                                       =  (𝛼 +  𝛾)2  +  ||𝛽𝑥 +  𝛿𝑦||2 +  (𝛼 −  𝛾)2 + ||𝛽𝑥 –  𝛿𝑦||2                                                                                                                                                          

                                              =  (𝛼 +  𝛾)2 + (𝛼 −  𝛾)2 + ||(𝛽𝑥 +  𝛿𝑦)2||  + ||(𝛽𝑥 −  𝛿𝑦)2||                                                                                                                                       
                                                                              ≥  (𝛼 +  𝛾)2 + (𝛼 −  𝛾)2 + ||(𝛽𝑥 +  𝛿𝑦)2 +  (𝛽𝑥 −  𝛿𝑦)2||                                                                                                                                   
                                                                              =  2𝛼2 +  2𝛾2 + || − 2(𝛽2 +  𝛿2)𝑎2||                                                                                                                                                      
                                                                              =  2𝛼2 +  2𝛾2 +  2𝛽2 +  2𝛿2 = 4                                                                                                                                                                     

This implies that 𝐴 is an inner product space. 

3) ⇒ 2) Assuming that  ||𝑥|| = 1, we have ||(𝑎 + 𝑥)2||2 =  4 and since (𝑎2/𝑎𝑥) = (𝑥2/𝑎𝑥)  =  (𝑎/𝑥)  =  0, then (𝑎2/𝑥2)  =  −1.                                                                                                                                                                                                                                

Moreover 

||𝑎2 + 𝑥2||2 =  ||𝑎2||2 + 2(𝑎2/𝑥2) + ||𝑥2||2 =  1 −  2 +  1 =  0                                                                  (1) 

So (1) gives   𝑥2 = −𝑎2, and then 𝑥2 = −||𝑥||2𝑎2  for all 𝑥 ∈ {𝑎}⊥. 

 

Lemma 2.9 Let 𝐴 be an absolute valued algebra containing a central element 𝑎. If there exists 𝑏 ∈ 𝐴 such ||𝑏|| = 1 and 𝑎 = 𝑎2𝑏, 

then 𝐴 is an inner product space. 

 

Proof. Let 𝑥 be a norm one in 𝐴 and suppose that (𝑎/𝑥)  =  0 in the inner product space [𝑎, 𝑥], then we have 

2 = ||𝑥 –  𝑎||||𝑥 +  𝑎|| = ||𝑥2 − 𝑎2|| = ||𝑥2𝑏 −  𝑎2𝑏|| =  ||𝑥2𝑏 –  𝑎||. 

As (𝑥2𝑏)𝑎 =  𝑎(𝑥2𝑏), then by Lemma 2.7 we get  𝑥2𝑏 =  −𝑎 =  −𝑎2𝑏. Hence the result is concluded by a simplification by 𝑏 and 

using proposition 2.8. 

 

Corollary 2.10 Let 𝐴 be an absolute valued algebra containing a central algebraic element 𝑎, then 𝐴 is an inner product space. 

Proof. As 𝐴(𝑎) is finite dimensional, then 𝐴(𝑎) is a division algebra. Therefore the operator 𝐿𝑎2 of left multiplication by 𝑎2 on 

ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

. (𝑎) is bijective, and there exists 𝑏 ∈ 𝐴(𝑎) such ||𝑏|| = 1 and 𝑎 = 𝐿𝑎2(𝑏) = 𝑎2𝑏. Then the result is consequence 

of the lemma 2.8.                                                                                                                                                                         

 

Corollary 2.11 Let A be an absolute valued algebra whose norm comes from an inner product and contains a nonzero central 

element a. Then  𝑥𝑧 + 𝑧𝑥 = 2(𝑧|𝑎)𝑎𝑥 − 2(𝑥|𝑧)𝑎2 for all 𝑥, 𝑧 ∈  𝐴 with (𝑎|𝑥)  =  0. 

Proof. Let 𝑦 = 𝑧 − (𝑧|𝑎)𝑎 , we have  𝑥, 𝑦 ∈ {𝑎}⊥. Then (𝑥 + 𝑦)2 = −||𝑥 + 𝑦||2𝑎2 (proposition 2.8), hence 𝑥𝑦 + 𝑦𝑥 = −2(𝑥|𝑦)𝑎2. 

Therefore that  𝑥𝑧 + 𝑧𝑥 = 2(𝑧|𝑎)𝑎𝑥 − 2(𝑥|𝑧)𝑎2. 

 

3. Main Results                                                                                                                                                                                     

3.1. Absolute Valued Algebras Satisfying (𝒙, 𝒙, 𝒙)  =  𝟎 

In this section we prove that if 𝐴 is an absolute valued algebra containing a central element 𝑎 and satisfying (𝑥, 𝑥, 𝑥) = 0. Then 𝐴 

is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                                                                   

 

Lemma 3.1.1 Let 𝐴 be an absolute valued algebra containing a central element 𝑎 and satisfying (𝑥, 𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐴, then  

𝑥𝑎2 =  𝑎2𝑥 and 𝐴 is an inner product space. 

Proof. Let 𝑥 be a element in 𝐴, we have (𝑥 + 𝑎, 𝑥 + 𝑎, 𝑥 + 𝑎) = 0. Then 

0 = (𝑥 + 𝑎, 𝑥 + 𝑎, 𝑥 + 𝑎) = (𝑥, 𝑥, 𝑎) + (𝑥, 𝑎, 𝑥) + (𝑥, 𝑎, 𝑎) + (𝑎, 𝑥, 𝑥) + (𝑎, 𝑎, 𝑥) 

Replacing  𝑥  by  −𝑥, we get  (𝑥, 𝑥, 𝑎)  + (𝑥, 𝑎, 𝑥)  −  (𝑥, 𝑎, 𝑎)  + (𝑎, 𝑥, 𝑥)  −  (𝑎, 𝑎, 𝑥)  =  0 

Adding these two equalities, we have    0 =  (𝑥, 𝑎, 𝑎)  +  (𝑎, 𝑎, 𝑥)  =  𝑥𝑎2  −  𝑎2𝑥 

Then 𝑥𝑎2 =  𝑎2𝑥 for all 𝑥 ∈  𝐴, by proposition 2.8 we conclude that 𝐴 is an inner product space. 

 

Theorem 3.1.2 Let A be an absolute valued algebra containing a central element 𝑎 and satisfying (𝑥, 𝑥, 𝑥)  =  0 for all 𝑥 ∈ 𝐴, then 

𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                                                   

Proof. By lemma 3.1.1, 𝐴 is an inner product space. We assume that 𝑎 and 𝑎2 are linearly independent, and let 𝑥 ∈ {𝑎2, 𝑎}⊥ such 

that ||𝑥|| = 1, we have 𝑥𝑎2 =  𝑎2𝑥 (lemma 3.1.1) and 𝑎𝑥 =  𝑥𝑎, then −(𝑎2)2 = 𝑥2 = −𝑎2 (proposition 2.8). This means that 𝑎2 =

± 𝑎, which is absurd. Therefore 𝑎 is a central idempotent, hence 𝐴 is finite dimensional and is isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

 

(theorem 2.4). 

 

3.2 Absolute Valued Algebras Satisfying (𝒙𝟐, 𝒙𝟐, 𝒙𝟐) =  (𝒙, 𝒙𝟐, 𝒙) = 𝟎 

In this section we prove that if 𝐴 is an absolute valued algebra containing a central element 𝑎 and satisfying (𝑥2, 𝑥2, 𝑥2) = 0 or 

(𝑥, 𝑥2, 𝑥) = 0. Then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                                                                   

 

Theorem 3.2.1 Let 𝐴 be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥2, 𝑥2, 𝑥2) = 0 for all 

𝑥 ∈ 𝐴, then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                                                   

Proof. According to corollary 2.10, 𝐴 is an inner product space. We assume that 𝑎 and 𝑎2 are linearly independent, and let 𝑥 ∈
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{𝑎2, 𝑎}⊥ such that ||𝑥|| = 1. Since 𝑎𝑥 = 𝑥𝑎, then 𝑥2 = −𝑎2 (proposition 2.8), and ((𝑎 +  𝑥)2, (𝑎 + 𝑥)2, (𝑎 + 𝑥)2)  =  0. Then   

(𝑎𝑥, 𝑎𝑥, 𝑎𝑥)  =  0, that is                          (𝑎𝑥)2(𝑎𝑥)  =  (𝑎𝑥)(𝑎𝑥)2                             (2) 

Moreover 𝐴(𝑎, 𝑎2) is a finite dimensional division sub-algebra of 𝐴, then there exists a nonzero element 𝑏 ∈ 𝐴(𝑎, 𝑎2) such that 

𝑎𝑏 = 𝑏𝑎 = 𝑎. Since                                        (𝑎𝑥/𝑎)  =  (𝑎𝑥/𝑎𝑏)  =  (𝑥/𝑏)  =  0,                                                                                       

then (𝑎𝑥)2 = −𝑎2. So (2) gives  𝑎2(𝑎𝑥)  =  (𝑎𝑥)𝑎2, also    (𝑎𝑥/𝑎2)  =  (𝑥/𝑎) = 0                                                                             

this implies, by proposition 2.8, that  (𝑎𝑥)2 =  −(𝑎2)2. Hence  (𝑎2)2 = 𝑎2, therefore 𝑎2 = ± 𝑎 (𝑎𝑎2 = 𝑎2𝑎), which is absurd. So 𝑎 is 

a central idempotent, and the result is consequence of the theorem 2.5.  

 

Theorem 3.2.2 Let 𝐴 be an absolute valued algebra containing a central algebraic element 𝑎 and satisfying (𝑥, 𝑥2, 𝑥) = 0 for all 

𝑥 ∈ 𝐴, then 𝐴 is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                                                   

Proof. According to corollary 2.10, 𝐴 is an inner product space. Let 𝑥 ∈ {𝑎2, 𝑎}⊥ such that ||𝑥|| = 1. Since 𝑎𝑥 = 𝑥𝑎, then 𝑥2 = −𝑎2 

(proposition 2.8), and (𝑎 + 𝑥, (𝑎 + 𝑥)2, 𝑎 + 𝑥) = 0. Then (𝑎 + 𝑥, 𝑎𝑥, 𝑎 + 𝑥) = 0, replacing 𝑥 by −𝑥, we get (𝑎 − 𝑥, 𝑎𝑥, 𝑎 − 𝑥)  =  0. 

Adding these two equalities, we obtain (𝑥, 𝑎𝑥, 𝑥) = 0.  

 

Using corollary 2.11, we have                            𝑥𝑥2 + 𝑥2𝑥 =  2(𝑥2/𝑎)𝑎𝑥 −  2(𝑥|𝑥2)𝑎2 

                                                                                             = −2(𝑎2/𝑎)𝑎𝑥 −  2(𝑥|𝑥2)𝑎2 

                                                                                             =  −2(𝑎2/𝑎)𝑎𝑥         ((𝑥2/𝑥) = −(𝑎2/𝑥) = 0) 

Also,                                                         (𝑥𝑥2)𝑥 + (𝑥2𝑥)𝑥 =  −2(𝑎2/𝑎)(𝑎𝑥)𝑥                                                                                                                        
                                                               𝑥(𝑥2𝑥)  + (𝑥2𝑥)𝑥 =  −2(𝑎2/𝑎)(𝑎𝑥)𝑥           ((𝑥, 𝑥2, 𝑥)  =  0) 

According to corollary 2.11,     2(𝑥2𝑥/𝑎)𝑎𝑥 −  2(𝑥2𝑥/𝑥)𝑎2  =  −2(𝑎2/𝑎)(𝑎𝑥)𝑥                                                                                                  
                                                     (𝑥2𝑥/𝑎)𝑎𝑥 +  (𝑥2𝑥/𝑥)𝑥2  =  −(𝑎2/𝑎)(𝑎𝑥)𝑥 

So                                                     (𝑥2𝑥/𝑎)𝑎 + (𝑥2𝑥/𝑥)𝑥 =  −(𝑎2/𝑎)𝑎𝑥                                                                               (3)                    

Thus                                          ((𝑥2𝑥/𝑎)𝑎 + (𝑥2𝑥/𝑥)𝑥/𝑎)  =  −(𝑎2/𝑎)(𝑎𝑥/𝑎)                                                                                       

 

Since 𝐴(𝑎, 𝑎2) is a finite dimensional division sub-algebra of 𝐴, then there exists a nonzero element 𝑏 ∈ 𝐴(𝑎, 𝑎2) such that 𝑎𝑏 =

𝑏𝑎 = 𝑎. So  (𝑎𝑥/𝑎)  =  (𝑎𝑥/𝑎𝑏)  =  (𝑥/𝑏)  =  0, this implies that  (𝑥2𝑥/𝑎)  =  0. Therefore (3) gives (𝑥2𝑥/𝑥)𝑥 =  −(𝑎2/𝑎)𝑎𝑥, and we 

have the following two cases: 

 

• If (𝑎2/𝑎) = 0, then (𝑥2𝑥/𝑥) = 0, 𝑥𝑥2 + 𝑥2𝑥 =  0  and (𝑎2)2 = −𝑎2 = 𝑒. Moreover, we have (𝑒 +  𝑥, (𝑒 +  𝑥)2, 𝑒 +  𝑥)  =

 0 which means that                                            0 =  (𝑒 +  𝑥, 𝑒, 𝑒 +  𝑥) 

                                                                                               =  (𝑒, 𝑒, 𝑥) + (𝑥, 𝑒, 𝑒)       (𝑥2  =  𝑒) 
                                                                                               =  𝑒𝑥 −  𝑒(𝑒𝑥)  + (𝑥𝑒)𝑒 −  𝑥𝑒 

                                                                                               =  2𝑒𝑥 +  𝑒(𝑥𝑒)  +  (𝑥𝑒)𝑒              (𝑒𝑥 =  −𝑥𝑒) 

                                                                                               =  2𝑒𝑥 +  2(𝑥𝑒|𝑎)𝑎𝑒 −  2(𝑥𝑒|𝑒)𝑎2          (𝑐𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 2.11) 

 

Since 𝐴(𝑎, 𝑎2) is a finite dimensional division sub-algebra of 𝐴, then there exists a nonzero element 𝑐 ∈ 𝐴(𝑎, 𝑎2) such that 𝑐𝑎2 = 𝑎, 

so (𝑥𝑒/𝑎)  =  (𝑥𝑒/𝑐𝑎2)  = −(𝑥𝑒/𝑐𝑒) = − (𝑥/𝑐) = 0. Since (𝑥𝑒/𝑒) = (𝑥𝑒/𝑒2) = (𝑥/𝑒) = 0, then 𝑥 =  0. Which is absurd, in this case 

𝐴 =  𝐴(𝑎, 𝑎2) is a commutative algebra and is isomorphic to  ℂ or ℂ
∗

.   

 

• If (a2/a) ≠ 0, then 𝑎𝑥 =  ±𝑥. Thus (𝑥, 𝑥, 𝑥)  =  (𝑥, 𝑎𝑥, 𝑥)  =  0, hence the result is consequence of the theorem 3.1.2. 

 

4. Conclusion  

We have the following classical results:                                                                                                                                             

Theorem.  Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are 

equivalent

1) A satisfies (𝑥, 𝑥, 𝑥)  =  0,                                                                                                                                                                     

2) A satisfies (𝑥2, 𝑥2,  𝑥2)  =  0,                                                                                                                                                             

3) A satisfies (𝑥, 𝑥2, 𝑥)  =  0,                                                                                                                                                                

4) A is finite dimensional and isomorphic to ℝ, ℂ, H, O, ℂ
∗

, H
∗

 or O
∗

.                                                                                                                              

Based on the findings of this article, the following conclusions can be drawn:                                                                                  

1) In general, if A is a real absolute valued algebra containing a nonzero central algebraic element, then, A is a pre-Hilbert 

algebra. It may be conjectured that every absolute valued algebra containing a nonzero central element is pre-Hilbert algebra.                                                                                                                                                              

2) Note that, central idempotent is a central element. The reciprocal case does not hold in general, and the counter-example is 

given [Benslimane, 2011].                                                                                                                                                                                                

3) We give some conditions that imply that any absolute valued algebra 𝐴 is an inner product space. 
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In future work, it is intended to classify all real absolute valued algebra containing a nonzero central algebraic element and 

satisfying (𝑥2, 𝑥, 𝑥2) = 0, (𝑥2, 𝑥, 𝑥) =  0, (𝑥, 𝑥, 𝑥2) =  0, (𝑥2, 𝑥2, 𝑥) =  0 𝑜𝑟 (𝑥, 𝑥2, 𝑥2)  =  0.  
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