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| ABSTRACT

In (Moutassim, n.d), we have proven that if A is an absolute valued algebra containing a nonzero central algebraic element, then
A is a pre-Hilbert algebra. Here we show that A is finite dimensional in the following cases:

1) A satisfies (x2,x,x) = 0 or (x,x,x%) =0

2) A satisfies (x2,x2,x) = 0or (x,x%,x%) = 0.

In these cases A is isomorphic to R, C,H or O.
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1. Introduction

Absolute valued algebras are those real or complex algebras A satisfying ||xy|| = [|x]|.||y|| for a given norm ||.|| on A, and x,y €
A. It it well known that any familiar identity in an absolute valued algebras as commutativity [Urbanik, 1960] or power associativity
[Wright, 1953; EI-Mallah, 1980] carry away finite dimensionality. Albert's paper [1947] contains a fundamental result asserting that
any finite dimensional absolute valued algebras has dimension n = 1, 2,4 or 8 and is isotopic to one of classical (unital) absolute
valued algebras R, C, H or O. EI-Mallah and Micali showed that any flexible absolute valued algebras is finite dimensional [EI-Mallah,
1981]. Next, EI-Mallah showed that for a finite dimensional absolute valued algebra 4, flexibility and identity (x,x,x) = 0 (where
(.,.,.) means associator) coincide [El-Mallah, 1987]. Recently the study of absolute valued algebras with weakly identities as
(x%,x,x) = 0, (x,x,x2) = 0,(x%x2,x) = 0 or (x,x?,x2) =0, becomes of actuality. It is shown that any absolute valued algebras
with a central idempotent and satisfying (x2,x,x) = 0 or (x,x,x%) = 0is finite dimensional and isomorphic to R,C,Hor O [El-
Mallah, 2001]. Urbanik and Wright proved in 1960 that all unital absolute valued algebras are classified by R,C,H and O [10]. It is
easily seen that the one-dimensional absolute valued algebras are classified by R, and it is well-known that the two-dimensional

absolute valued algebras are classified by C, C*, *C or C (the real algebras obtained by endowing the space C with the product x *
y =Xy, x*y =Xy, and x*y = Xy respectively) [Rodriguez, 1994]. It is natural to study those absolute valued algebras by replacing
the original assumption central idempotent by a weaker one central algebraic element, we prove that, if A is an absolute valued
real algebra containing a central algebraic element a and satisfying one of the following identities (x2,x,x) = 0, (x,x,x2) =
0,(x%,x2,x) = 0or (x,x2,x2) = 0. Then A is finite dimensional and isomorphic to R, C, H or O (theorems 3.1, 3.2, 3.3, 3.4, 3.5 and
3.6) this result is an important generalization of a results given in [Chandid, 2008] and [EI-Mallah, 2001].

In section 2 we introduce the basic tools for the study of absolute valued algebras containing a central algebraic element. We also
give some properties related to central algebraic element satisfying some restrictions on commutativity (proposition 2.6 and lemma
2.7). Moreover, the section 3 is devoted to classify all absolute valued algebras with a central algebraic element and satisfying one
of the following identities (x2,x,x) = 0, (x,x,x2) =0, (x%,x2,x) = 0or (x,x2,x%) = 0.
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The paper ends with the following main results:

Theorem. Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are
equivalent:

1) A satisfies (x2,x,x) = 0 or (x,x,x%) =0,

2) A satisfies (x2,x2,x) = 0or (x,x2,x2) =0,

3) A is finite dimensional and isomorphic to R, C, H or O.

2. Notation and Preliminaries Results
In this paper all the algebras are considered over the real numbers field R.
Definition 2.1 Let B be an arbitrary algebra.
i) B is called a division algebra if the operators L, and Ry of left and right multiplication by x are bijective for all x € B \ {0}.
i) We say that B is algebraic, if for every x in B, the subalgebra B(x) of B generated by x is finite dimensional.
iii) We mean by a nonzero central element in B, a nonzero element which commute with all elements of the algebra B.
iv) B is called a normed algebra (respectively, absolute valued algebra) if it is endowed with a space norm: || .|| such that [|xy|| <
lIxIHyll (respectively, |lxyll = llx[lllyll, for all x,y € B).
v) B is called a pre-Hilbert algebra if it is endowed with a space norm comes from an inner product (./.) such that

(./): BxB — R

) = 2 (x+ylI2 = llx = ylI?)

The most natural examples of absolute valued algebras are R, C, H (the algebra of Hamilton quaternion) and O (the algebra of
Cayley numbers) with norms equal to their usual absolute values [EI-Mallah, 2001] and [Urbanik, 1960].

We need the following relevant results:

Theorem 2.2 [Moutassim, n.d] The norm of any absolute valued algebra containing a nonzero central algebraic element comes
from an inner product.

Theorem 2.3 [Chandid, 2001] Any absolute valued algebra A with a central idempotent satisfying (x2,x,x) = 0, (x,x,x2) =
0,(x%,x%,x) = 0or (x,x%,x2) = 0 for all x € A is finite dimensional and is isomorphic to R, C, H or O.

*

Theorem 2.4 [Urbanik, 1960] A commutative absolute valued algebra is isomorphic to R, Cor C

Theorem 2.5 [Rodriguez, 1994] The norm of any absolute valued algebra A with left unit A comes from an inner product and
satisfying (ab/c) = —(b/ac) and a(ab) = —||al|?b for all a,b,c € A with a orthogonal to e.

we give some conditions imply that A is an inner product space.

Proposition 2.6 [8] Let A be an absolute valued algebra containing a central element a and let x be a element in A. If x is orthogonal
to a in the inner product space [a, x], then the following are equivalent:

1) x%2a? = a?x?,

2) x2 = —|[|x]|2a?,

3) A is an inner product space.

Lemma 2.7 Let A be an absolute valued algebra containing a nonzero central algebraic element a. Then

xy + yx = 2(x|y)a? for all x,y € {a}*.

Proof. By theorem 2.2, A is an inner product space. We have x,y € {a}*, then (x + ¥)? = —||x + y||?a? (proposition 2.6), hence
xy + yx = —2(x|y)a?.

3. Main Results

3.1. Absolute Valued Algebras Satisfying (x%,x,x) = 0 or (x,x, x?)

In this section we prove that if 4 is an absolute valued algebra with a central element a and satisfying (x2,x,x) = 0 or (x,x,x2) =
0. Then A is finite dimensional and isomorphic to R, C, H or O.

Theorem 3.1 Let 4 be an absolute valued algebra containing a central algebraic element a and satisfying (x2,x,x) = 0 for all x € A.
If a and a? are linearly independent, then A(a, a?) is isomorphic to C.
Proof. By theorem 2.2, A is an inner product space. Let d = a? — (a/a?)a, we have (d/a) = 0, by lemma 2.7
d*> = —|ld||?a® = —(1 — (a/a*)*)a®
That is -1 = (a/a®)Ha? = (a® - (a/a?®)a)?
= (a?)? —2(a/a?)aa® + (a/a?)?a?
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= (a’a)a —2(a/a®)aa’ + (a/a?)%a?
= (a%a - 2(a/a®)a® + (a/a?)?a)a
This gives -1 = (a/a®)®)a = a?a —2(a/a®)a? + (a/a?®)?a
So a’a = 2(a/a*)a’* —a
Hence A(a, a?) is a two-dimensional commutative sub-algebra of 4, thus A(a, a?) is isomorphic to C or C (theorem 2.4). If

A(a, a?) is isomorphic to C, then there exist a basis {f,j} of A(a,a?) such that f2 = f, j2 = —f and jf = fj = —j. Since
G2iDN==FiD=-UNj+fi=-f-f=-2f=#0

Which absurd, therefore A(a, a?) is isomorphic to C.

From the last result we conclude there exists a nonzero idempotent e € A and a nonzero element i € 4 such that

e?=¢, ie = eiand i? = —e. We put a = ae + i with a, € R (a? + 2 = 1). Then we get the following result:

Theorem 3.2 Let A be an absolute valued algebra containing a central algebraic element a and satisfying (x2,x,x) = 0 forall x €
A, then A is finite dimensional and isomorphic to R, C,H or O.

Proof. By theorem 2.2, A is an inner product space. Let x € {a,a?}* be a norm one element, we have the following two cases:
1) If @ and a? are linearly independent, then A(a, a?) is isomorphic to € (theorem 2.4). We put a = ae + Bi (notation above) and

led d =ia = ai— Be, we have (d/a) = (ia/a) = (i/e) = 0, then dx = —xd (Lemma 2.7). Since ax = xa, we obtain
aex + fix = axe + fxi and — Pex + aix = —Pxe + axi

From these equalities, we get Baex + B%ix = Baxe + B2xi )

and —afex + a’ix = —afxe + a’xi ()

Adding the two equalities (1) and (2), we obtain ix = xi (a? + f? = 1). According to proposition 2.6 x? = —i? = e. Sincex €
{a,a?}* and ax = xa, then e = x2 = —a?. Thatis, e = —(a? — ?)e — 2api, this implies a =0o0rp = 0.

a and a? are linearly independent, thus § # 0, therefore a = 0. Which means that (a/a?) = (a/e) = 0.

On the other hand, 0 =(e+x)e+xe+x)

(2e,e +x,e +x)

(e,e,x) + (e,x,e) + (e,x,x)

= (e,e,x) + (e, x,e) ((e,x,x) = (x%,x,x) = 0)

= ex —e(ex) + (ex)e — e(xe)

= —xe —e(ex) + (ex)e + e(ex) (by lemma 2.7, ex + xe = 0)
This implies (ex)e = xe, thus ex = x. Since ev = ve = v forall v € A(a,a?),theney = yforally € A. Hence e is a left unit
of A. Moreover 0 =(a+x)%a+xa+x)

= (ax,a+x,a+x)
= (ax,a,a) + (ax,a,x) + (ax, x,a) + (ax, x, x)

We replace x by —x, we get (ax,a,a) + (ax,x,x) =0 (3)
and (ax,a,x) + (ax,x,a) =0 4)
So (4) gives ((ax)a)x — (ax)? + ((ax)x)a — (ax)? = 0

That is (a(ax))x + ((ax)x)a = 2(ax)?

As (a/e) = 0 and theorem 2.5, we get —x2 + ((ax)x)a = 2(ax)? (5)
We have (ax/a) = (x/e) =0, then (ax)?=—a?=ce¢,

So (5) gives ((ax)x)a = —3e

Which absurd, ||((ax)x)a|| =1 and ||—3e|| = 3. Therefore x = 0, in this case A = A(a, a?) is isomorphic to C.
2) If a and a? are linearly dependent, then a is a nonzero central idempotent and the theorem 2.3 completes the proof.

Similarly, we can get all preceding results if A satisfies (x, x, x2)
Theorem 3.3 Let A be an absolute valued algebra containing a central algebraic element a and satisfying (x, x, x2) for all x € 4,
then A is finite dimensional and isomorphic to R, C, H or O.

3.2 Absolute Valued Algebras Satisfying (x*,x*,x) = 0 or (x,x%,x?) =0
In this section we prove that if A is an absolute valued algebra containing a central element a and satisfying (x2,x%,x) = 0 or
(x,x%,x2) = 0. Then 4 is finite dimensional and isomorphic to R, C, H or O.

Theorem 3.4 Let A be an absolute valued algebra containing a central algebraic element a and satisfying (x2,x2%,x) = 0 for all x €
A. If a and a? are linearly independent, then A(a, a?) is isomorphic to C.
Proof. By theorem 2.2, A is an inner product space. Let d = a? — (a/a?)a, (d # 0), we have (d/a) = 0, by proposition 2.6
d?> = —||d||?a® = —(1 — (a/a*)*)a®
That is —(1 - (a/a®)?)a? = (a? — (a/a®)a)?
—a? + (a/a?)?a? = (a?)? —2(a/a?)aa® + (a/a?)?a®
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This gives (a®)? = 2(a/a®)aa® — a? (6)
e If(a/a®) =0, then (a®)? = —a? and (a?®)%a = —a’?a
aZ(aZa) — _a2 — (aZ)Z

Hence aa? = a, which means that A(a, a?) is a two dimensional commutative sub-algebra of A.
Let ¢ = aa? — (a/aa?)a, we have (c/a) = 0, by proposition 2.6,
¢ = —|lcl|*a® = —(1 - (a/aa*)*)a?
e If|lc|]| =0,then aa®? = +a.Thatis  (a?®)? = 2(a/a®)aa®? —a? = +2(a/a?)a — a?
This implies that A(a, a?) is a two dimensional commutative sub-algebra of A.
Assuming that (a/a?) # 0 and ||c|| # 0. Since (d?,d?,d) = 0, then (a?,a?, a?) = 0 thus (a?®)?a? = a?(a?)?
So (6) gives (aa?)a? = a?(aa?), moreover dc = (a®> — (a/a®)a)(aa® — (a/aa?)a)
a?(aa?) — (a/a®)a(aa?) — (a/aa?)aa® + (a/a?®)(a/aa?)a?
(aa®)a? — (a/a®)a(aa?) — (a/aa?)aa®? + (a/a?)(a/aa?)a?
=cd

And since ||c||2d? = ||d]|?c?, then ||c||d = ||d||c or |[c||d = —]||d]||c. We conclude that

lldllaa® = ||c|la® + ((a/aa®)|ldl| — (a/a®)llc|Da

Or
lldllaa® = [lc|la® + ((a/aa®)|ldl| — (a/a®)lc]]a .
Therefore A(a, a?) is a two-dimensional commutative sub-algebra of 4, thus A(a, a?) is isomorphic to C or C (theorem 2.4). If
A(a,a?) is isomorphic to (E,that is, there exist a basis {f,j} of A(a,a?) suchthat f2 = f, j2 = —f and jf = fj = —j. Since
G2PPN=ULfD=fi-ffD=—j—j=-2j#0

Which absurd, therefore A(a, a?) is isomorphic to C.

From the last result we conclude there exists a nonzero idempotent e € A and a nonzero element i € A such that

e?=e, ie = eiand i® = —e. We put a = ae + Bi with «,f € R (a? + % = 1). Then we get the following result:

Theorem 3.5 Let A be an absolute valued algebra containing a central algebraic element a and satisfying (x2,x2%,x) = 0 for all x €
A, then A is finite dimensional and isomorphic to R, C,H or O.

Proof. By theorem 2.2, A is an inner product space. Let x € {a,a?}! be a norm one element, we have the following two cases:
1) If a and a? are linearly independent, then A(a, a?) is isomorphic to C (theorem 2.4). We put a = ae + Bi (notation above) and

d = ia = ai — fe, we have (d/a) = (ia/a) = (i/e) = 0,then dx = —xd (Lemma 2.7). Since ax = xa, we obtain

aex + fix = axe + fxi and — fex + aix = —fxe + axi
From these equalities, we get Baex + B?%ix = Paxe + [?xi (7
and —afex + a’ix = —afxe + a’xi (8)

Adding the two equalities (7) and (8), we obtain ix = xi (a? + 2 = 1). According to proposition 2.6 x2 = —i? =e. Sincex €
{a,a?}* and ax = xa, then e = x2 = —a?. Thatis, e = —(a? — f?)e — 2api, this implies a =0orf =0.
But we have, a and a? are linearly independent, thus g = 0, therefore a = 0. Which means that (a/a?) = (a/e) = 0.
On the other hand, using lemma 2.7, ex + xe = 0. So
0= ((e+x)?(e+x)?e+x)

= (2e,2e,e +x)

= (e, e,x)

= ex —e(ex)
this implies ex = x. Since ev = ve = v forall v € A(a,a?), theney = yforally € A. Hence e is a left unit of A.
Moreover 0 = ((a+x)?%(a+x)?%a+x)

= (ax,ax,a + x) (x? = —a?)

= (ax,ax,a) + (ax, ax,x)
We replace x by —x, we get (ax,a,a) =0 9)
and (ax,a,x) =0 (10)
So (10) gives (ax)? = ((ax)a)x = 0
That is (a(ax))x = (ax)?

As (ax/a) = (x/e) = 0, thus (ax)? = —a? = e. And by theorem 2.5, we get —x? = (ax)? = e = x?
Therefore x = 0, in this case A = A(a, a?) is isomorphic to C.
2) If a and a? are linearly dependent, then a is a nonzero central idempotent and the theorem 2.3 completes the proof.

Similarly, we can get all preceding results if A satisfies (x, x2,x?)
Theorem 3.6 Let A be an absolute valued algebra containing a central algebraic element a and satisfying (x, x2,x?) for all x € 4,
then A is finite dimensional and isomorphic to R, C, H or O.

4. Conclusion
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We have the following classical results:

Theorem. Let A be an absolute valued algebra containing a nonzero central algebraic element. Then the following assertions are
equivalent:

1) A satisfies (x2,x,x) = 0,

2) A satisfies (x,x, x2) = 0,

3) A satisfies (x2, x2, x) = 0,

4) A satisfies (x,x?, x?) = 0,

5) A is finite dimensional and isomorphic to R, C, H or O.

Based on the findings of this article, the following conclusions can be drawn:

1) In general, if A is a real absolute valued algebra containing a nonzero central algebraic element, then, A is a pre-Hilbert
algebra. It may be conjectured that every absolute valued algebra containing a nonzero central element is pre-Hilbert algebra.
2) Note that, central idempotent is a central element. The reciprocal case does not hold in general, and the counter example is
given [Benslimane, 2011].

3) We classify all real absolute valued algebra containing a nonzero central algebraic element and satisfying

(x2,x,x) = 0,(x,x,x2) = 0,(x%,x2%,x) = 0or (x,x%,x%) = 0. In future work, it is intended to study the finite dimensional real
algebras containing a nonzero central element.
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