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| ABSTRACT 

Kilmer and Zheng (2021) recently introduced a generalized version of the alternating harmonic series. In this paper, we introduce 

a new generalization of the alternating harmonic series. A special case of our generalization converges to the Kilmer-Zheng 

series. Then we investigate several interesting and useful properties of this generalized, such as a summation formula related to 

the Hurwitz -Lerch Zeta function, a duplication formula, an integral representation, derivatives, and the recurrence relationship. 

Some important special cases of the main results are also discussed. 
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1. Introduction 

In 2021, Kilmer and Zheng [2021] introduced a generalization of the alternating harmonic series: 

𝑺𝒌 = (𝟏 +
𝟏

𝟐
+ ⋯ +

𝟏

𝒌
) − (

𝟏

𝒌 + 𝟏
+ ⋯ +

𝟏

𝟐𝒌
) 

+ (
𝟏

𝟐𝒌 + 𝟏
+ ⋯ +

𝟏

𝟑𝒌
) − (

𝟏

𝟑𝒌 + 𝟏
+ ⋯ +

𝟏

𝟒𝒌
) + ⋯ 

 

(1.1) 

 

The case 𝑘 = 1 reduces immediately to the well-known alternating harmonic series: 

 

𝑺𝟏 = 1 −
1

2
+

1

3
−

1

4
+ ⋯ = log 2 

 

The generalized series 𝑺𝒌 converges for each positive integer 𝒌, and satisfies the following equation ([Kilmer, 2021], corollary 2.3) 

𝑺𝒌 =
𝝅

𝟐𝒌
∑ 𝐜𝐬𝐜

𝒎𝝅

𝒌
+

𝒌−𝟏

𝒎=𝟏

𝟏

𝒌
𝐥𝐨𝐠 𝟐 

 

(1.2) 

 

This series also has an integral representation given by ([Kilmer, 2021], page: 13482) 

 

𝑺𝒌 = ∫
1 − 𝑥𝑘

1 − 𝑥

1

𝑥𝑘 + 1
𝑑𝑥

1

𝟎

 
(1.3) 

 

The relationship between Harmonic numbers and the generalized series 𝑺𝒌 is given by 

([Kilmer, 2021], Theorem 3.2) 

𝐥𝐢𝐦
𝒌→∞

𝑯𝒌 − 𝑺𝒌 = 𝐥𝐨𝐠
𝝅

𝟐
 (1.4) 
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Motivated by the generalized alternating harmonic series 𝑺𝒌, we introduce a further generalization of the alternating harmonic 

series in this paper for which the series 𝑺𝒌 defined above is a special case. We study some properties of this series and prove some 

relationships with other functions. 

 

Before defining the new generalization, we start with some definitions of the family of zeta functions needed for the statement of 

the results.  

 

Let ℤ+ , ℤ−denote the set of positive integers, negative integers, respectively, also let: ℤ0
+ = ℤ+⋃{0} and ℤ0

− = ℤ−⋃{0} 

And as usual, ℕ denotes the set of natural numbers, ℂ denotes the set of complex numbers. 

The Hurwitz -Lerch Zeta function ( [Chaudhry, 2021], Eq (1.3)), also ( [Nadeem, 2020], Eq (1.1))is an important function in the 

analytic number theory, and is defined by: 

 

 

Φ(𝑧, 𝑠, 𝑎) = ∑
𝑧𝑛

(𝑛 + 𝑎)𝑠

∞

𝑛=0

 (
𝑎 ∈ ℂ ∖ ℤ0

−; 𝑠 ∈ ℂ when |𝑧| < 1;

ℜ(𝑠) > 1 when |𝑧| = 1
)  

(1.5) 

 

The Hurwitz -Lerch Zeta function generalizes various special functions such as Zeta function 𝜁(𝑠), Dirichlet eta function 𝜂(𝑠), and 

the Hurwitz (or the generalized) Zeta function 𝜁(𝑠, 𝑎) 

 

Φ(1, 𝑠, 1) = 𝜁(𝑠) = ∑
1

𝑛𝑠

∞

𝑛=1

 
ℜ(𝑠) > 1 (1.6) 

Φ(−1, 𝑠, 1) = 𝜂(𝑠) = ∑
(−1)𝑛−1

𝑛𝑠

∞

𝑛=1

 
ℜ(𝑠) > 0 (1.7) 

Φ(1, 𝑠, 𝑎) = 𝜁(𝑠, 𝑎) = ∑
1

(𝑛 + 𝑎)𝑠

∞

𝑛=0

 
(𝑎 ∈ ℂ ∖ ℤ0

−, ℜ(𝑠) > 1) (1.8) 

The Polylogarithm function is also related to a special case of The Hurwitz -Lerch Zeta function: 

𝑧Φ(𝑧, 𝑠, 1) = Lis(𝑧) = ∑
𝑧𝑛

𝑛𝑠

∞

𝑛=1

 
 

(
𝑠 ∈ ℂ when |𝑧| < 1;

ℜ(𝑠) > 1 when |𝑧| = 1
) 

 

(1.9) 

 

An integral representation of the general Hurwitz -Lerch Zeta function ([2], Eq (1.4)) is given by: 

 

Φ(𝑧, 𝑠, 𝑎) =
1

Γ(𝑠)
∫

𝑡𝑠−1𝑒−𝑎𝑡

1 − 𝑧𝑒−𝑡 𝑑𝑡

∞

0

 
 

(
ℜ(𝑎) > 0, ℜ(𝑠) > 0 when |𝑧| ≤ 1 (𝑧 ≠ 1);

 ℜ(𝑠) > 1 when 𝑧 = 1
) 

 

(1.10) 

  

Where Γ(𝑠) is the Gamma function. 

 

2. A new generalization of the alternating harmonic series 

Definition 2.1 we consider the following generalizations of the alternating harmonic series:  

𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) = (𝑧 +
𝑧𝟐

𝟐𝑠 + ⋯ +
𝑧𝒌

𝒌𝑠) − (
𝑧𝒌+1

(𝒌 + 1)𝑠 + ⋯ +
𝑧2𝒌

(2𝒌)𝑠) 

+ (
𝑧2𝒌+1

(2𝒌 + 1)𝑠 + ⋯ +
𝑧3𝒌

(3𝒌)𝑠) − (
𝑧𝟑𝒌+1

(𝟑𝒌 + 1)𝑠 + ⋯ +
𝑧𝟒𝒌

(𝟒𝒌)𝑠) + ⋯ 

 

 

(2.1) 

 

We will assume that 𝑧 is a real number, 𝑠 is a complex, and  𝒌 is a positive integer. 

The convergence of this generalized series will be investigated in the next section. 

 

Observe that for 𝑧 = 1 and 𝑠 = 1 in particular, the generalized 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘)  reduces to the series 𝑺𝒌 in Eq. (1.1) 

 

Remark 2.1 the generalized 𝑨𝑯𝑆(𝑧, 𝑠, 𝑘) can be written as an alternating series as following: 

 



A New Generalization of the Alternating Harmonic Series 

Page | 72  

𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) = ∑ (
𝑧𝑚𝒌+1

(𝑚𝒌 + 1)𝑠
+

𝑧𝑚𝒌+2

(𝑚𝒌 + 2)𝑠
+ ⋯ +

𝑧𝑚𝑘+𝑘

(𝑚𝑘 + 𝑘)𝑠
) (−1)𝑚

∞

𝑚=0

 
 

(2.2) 

 

This form of alternating series will be used extensively in our main results. 

 

Remark 2.2 For 𝑘 = 1,the generalized series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) reduces to the polylogarithm function in the following case: 

 

𝐴𝐻𝑆(𝑧, 𝑠, 1) =
𝑧

1𝑠 −
𝑧2

2𝑠 +
𝑧3

3𝑠 −
𝑧4

4𝑠 + ⋯ = −Li𝑠(−𝑧) (
𝑠 ∈ ℂ when |𝑧| < 1;

ℜ(𝑠) > 1 when |𝑧| = 1
)  

(2.3) 

 

3. Convergence and relationships with the family of Zeta functions 

In this section, we study the convergence of the generalized series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘), and show some relationships between this 

generalized and the family of zeta functions. We also deduce the duplication formula of this generalized.  

Lemma 3.1 the generalized series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) converges for all: 
(i) 𝑠 ∈ ℂ when |𝑧| < 1 
(ii) ℜ(𝑠) > 0 when |𝑧| = 1(𝑏𝑢𝑡 𝑧 ≠ −1 𝑖𝑓 𝑘 = 𝑜𝑑𝑑) 
(iii) ℜ(𝑠) > 1 when 𝑧 = −1 𝑎𝑛𝑑 𝑘 = 𝑜𝑑𝑑 

 

Proof. we make use of Eq. (2.2): 

𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) = ∑ (
𝑧𝑚𝒌+1

(𝑚𝒌 + 1)𝑠 +
𝑧𝑚𝒌+2

(𝑚𝒌 + 2)𝑠 + ⋯ +
𝑧𝑚𝑘+𝑘

(𝑚𝑘 + 𝑘)𝑠) (−1)𝑚

∞

𝑚=0

 

 

                        = 𝒛 ∑
𝑧𝑚𝒌(−1)𝑚

(𝑚𝒌 + 1)𝑠

∞

𝒎=𝟎

+ 𝑧2 ∑
𝑧𝑚𝒌(−1)𝑚

(𝑚𝒌 + 2)𝑠

∞

𝒎=𝟎

+ ⋯ + 𝑧𝑘 ∑
𝑧𝑚𝒌(−1)𝑚

(𝑚𝒌 + 𝒌)𝑠

∞

𝒎=𝟎

 

 

                        =
𝟏

𝒌𝑠 (𝒛 ∑
(−𝑧𝑘)𝑚

(𝑚 +
1

𝑘
)

𝑠

∞

𝒎=𝟎

+ 𝑧2 ∑
(−𝑧𝑘)𝑚

(𝑚 +
2

𝑘
)

𝑠

∞

𝒎=𝟎

+ ⋯ + 𝑧𝑘 ∑
(−𝑧𝑘)𝑚

(𝑚 +
𝑘

𝑘
)

𝑠

∞

𝒎=𝟎

) 

 

 

 

 

 

 

 

 

 

 

 

(3.1) 

Observing that each series of the last expression converges for every complex numbers when |𝑧| < 1 

if 𝑧 = 1 or 𝑖𝑓 (𝑧 = −1 𝑎𝑛𝑑 𝑘 𝒊𝒔 𝒆𝒗𝒆𝒏 ), then each series is alternating series and converges when ℜ(𝑠) > 0 

if (𝑧 = −1 𝑎𝑛𝑑 𝒌 𝒊𝒔 𝒐𝒅𝒅), then each series satisfies the convergence of the Hurwitz-Zeta function (1.8) and converges when ℜ(𝑠) >
1 

 

Corollary 3.1 using the definition of the Hurwitz -Lerch Zeta function (1.5) to Eq. (3.1), gives: 

𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) =
𝟏

𝒌𝑠 ∑ 𝚽 (−𝑧𝒌, 𝒔,
𝒎

𝒌
)

𝒌

𝒎=𝟏

𝑧𝒎 
 

(3.2) 

 

Lemma 3.2 let 𝒌 be even, ℜ(𝑠) > 0, The following duplication formula holds: 

𝐴𝐻𝑆(1, 𝑠, 𝑘) + 𝐴𝐻𝑆(−1, 𝑠, 𝑘) = 21−𝑠𝐴𝐻𝑆 (1, 𝑠,
𝑘

2
) 

(3.3) 

 

Proof. Assuming that 𝒌  𝐢𝐬 𝐞𝐯𝐞𝐧 , ℜ(𝑠) > 0 , we have (−1)𝑚𝒌 = 1, applying this in Eq. (2.2): 

𝐴𝐻𝑆(1, 𝑠, 𝑘) + 𝐴𝐻𝑆(−1, 𝑠, 𝑘) = ∑ (
1

(𝑚𝒌 + 1)𝑠 +
1

(𝑚𝒌 + 2)𝑠 + ⋯ +
1

(𝑚𝑘 + 𝑘)𝑠) (−1)𝑚

∞

𝑚=0

 

+ ∑ (
(−1)1

(𝑚𝒌 + 1)𝑠 +
(−1)2

(𝑚𝒌 + 2)𝑠 + ⋯ +
(−1)𝑘

(𝑚𝑘 + 𝑘)𝑠) (−1)𝑚

∞

𝑚=0

 



JMSS 4(4): 70-75 

 

Page | 73  

                             = ∑ (
2

(𝑚𝒌 + 2)𝑠 +
2

(𝑚𝒌 + 4)𝑠 + ⋯ +
2

(𝑚𝑘 + 𝑘)𝑠) (−1)𝑚

∞

𝑚=0

 

                             =
𝟐

𝟐𝒔
∑ (

1

(𝑚
𝑘

2
+ 1)

𝑠 +
1

(𝑚
𝑘

2
+ 2)

𝑠 + ⋯ +
1

(𝑚
𝑘

2
+

𝑘

2
)

𝑠) (−1)𝑚

∞

𝑚=0

 

                              = 𝟐𝟏−𝒔𝐴𝐻𝑆 (1, 𝑠,
𝑘

2
) 

which completes the proof. 

Corollary 3.2 let  𝑘 = 2 in Eq. (3.3), then applying Eq. (2.3), gives: 

𝜂(𝑠) = 2𝑠−1(𝐴𝐻𝑆(1, 𝑠, 2) + 𝐴𝐻𝑆(−1, 𝑠, 2)) ℜ(𝑠) > 0 (3.4) 

 

Corollary 3.3 on setting 𝑠 = 1 in Eq. (3.3), gives: 

𝐴𝐻𝑆(−1,1, 𝑘) = 𝑺𝒌

𝟐

− 𝑺𝒌 𝒌 = 𝒆𝒏𝒆𝒏 (3.5) 

 

Where 𝑺𝒌 is the generalized alternating harmonic series defined in Eq. (1.1) 

 

4. An integral representation  

In this section, we present a certain integral representation of the generalized series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘), and discuss some special cases 

of this integral. 

 

Theorem 4.1 the series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) satisfies the following integral representation: 

 

𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) =
𝟏

Γ(𝑠)
∫

𝑥𝑘 − 1

(𝑥𝑘 + 1)(𝑥 − 1)
ln (

𝑧

𝑥
)

𝑠−1

𝑑𝑥

𝑧

0

 
(

𝑘 ∈ ℕ, ℜ(𝑠) > 0,

𝑧 ∈ ]0,1]
)  

(4.1) 

 

Proof. 

Using the integral representation of the Hurwitz -Lerch Zeta function in Eq. (1.10): 

 

𝚽 (−𝑧𝒌, 𝒔,
𝒎

𝒌
) =

1

Γ(𝑠)
∫

𝑡𝑠−1𝑒−
𝒎

𝑘
𝑡

1 + 𝑧𝒌𝑒−𝑡
𝑑𝑡

∞

0

 
 

(4.2) 

For 𝑘, 𝑚 ∈ ℕ , observing the domain of Eq. (1.10), it easy to see that the integral in Eq. (4.2) converges for 𝑧 ∈ ]0,1] when ℜ(𝑠) >

0. 

Then we insert Eq. (4.2) in Eq. (3.2) gives: 

 

           𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) =
𝟏

𝑘𝑠
∑ (

1

Γ(𝑠)
∫

𝑡𝑠−1𝑒−
𝒎

𝑘
𝑡

1 + 𝑧𝒌𝑒−𝑡
𝑑𝑡

∞

0

) 𝑧𝒎

𝑘

𝑚=1

 

 

                                   =
𝟏

𝑘𝑠Γ(𝑠)
∫ (

𝑡𝑠−1

1 + 𝑧𝒌𝑒−𝑡
∑ (𝑧𝑒−

𝑡

𝑘)
𝑚

𝑘

𝑚=1

)

∞

0

𝑑𝑡 

                                   =
𝟏

𝑘𝑠Γ(𝑠)
∫

𝑡𝑠−1

1 + 𝑧𝒌𝑒−𝑡
(𝑧𝑒−

𝑡

𝑘)

∞

0

(
(𝑧𝑒−

𝑡

𝑘)
𝑘

− 1

𝑧𝑒−
𝑡

𝑘 − 1
) 𝑑𝑡 

                                  =
𝟏

𝑘𝑠Γ(𝑠)
∫ (

𝑧𝒌𝑒−𝑡 − 1

𝑧𝒌𝑒−𝑡 + 1
)

∞

0

(
𝑧𝑒−

𝑡

𝑘

𝑧𝑒−
𝑡

𝑘 − 1
) 𝑡𝑠−1𝑑𝑡 

 

(4.3) 

By writing 𝑧𝑒−
𝑡

𝑘 = 𝑥 ↔ 𝑡 = 𝑘 ln (
𝑧

𝑥
) , then the integral in Eq. (4.3) becomes: 
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            𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) =
𝟏

𝑘𝑠Γ(𝑠)
∫

𝑥𝑘 − 1

(𝑥𝑘 + 1)

𝑧𝑒−∞

𝑧𝑒0

𝑥

(𝑥 − 1)
(𝑘 ln (

𝑧

𝑥
))

𝑠−1

(−
𝑘

𝑥
) 𝑑𝑥 

                                    =
𝑘𝑠

𝑘𝑠Γ(𝑠)
× − ∫

𝑥𝑘 − 1

(𝑥𝑘 + 1)(𝑥 − 1)
ln (

𝑧

𝑥
)

𝑠−1

𝑑𝑥

0

𝑧

 

                                    =
𝟏

Γ(𝑠)
∫

𝑥𝑘 − 1

(𝑥𝑘 + 1)(𝑥 − 1)
ln (

𝑧

𝑥
)

𝑠−1

𝑑𝑥

𝑧

0

 

this proves Eq. (4.1) 

 

Corollary 4.1 The special case 𝒔 = 𝟏 of Eq. (4.1) gives: 

 

𝐴𝐻𝑆(𝑧, 1, 𝑘) = ∫
𝑥𝑘 − 1

(𝑥𝑘 + 1)(𝑥 − 1)
𝑑𝑥

𝑧

𝟎

 
 

𝒌 ∈ ℕ, 𝑧 ∈ ]0,1] 
 

(4.4) 

 

Observe that for 𝑧 =1, the integral in Eq. (4.4) reduces to that in Eq. (1.3) 

 

Corollary 4.2 The special case 𝒌 = 𝟐 of Eq. (4.4) is: 

                 𝐴𝐻𝑆(𝑧, 1,2) = ∫
𝑥2 − 1

(𝑥2 + 1)(𝑥 − 1)
𝑑𝑥

𝑧

𝟎

=
𝟏

𝟐
∫

𝟐𝒙

𝑥2 + 1

𝒛

𝟎

𝒅𝒙 + ∫
𝟏

𝑥2 + 1

𝒛

𝟎

𝒅𝒙 

                                       =
𝟏

𝟐
𝐥𝐧(𝒛𝟐 + 𝟏) + 𝐭𝐚𝐧−𝟏 𝒛      𝒇𝒐𝒓          𝑧 ∈ ]0,1]                           

(4.5) 

 

5. Derivatives and the recurrence relationship 

In this section, we present the recurrence relationship of the generalized 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) , and show that for nonpositive integer 𝑠, the 

generalized series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) converges to a rational function. 

 

Lemma 5.1 for |𝑧| < 𝟏, 𝒌 ∈ ℕ, we have the following derivative: 

 

𝑑

𝑑𝑧
𝐴𝐻𝑆(𝑧, 1, 𝑘) =

𝑧𝒌 − 𝟏

(𝑧𝒌 + 𝟏)(𝑧 − 𝟏)
 

(5.1) 

 

Proof.  set  𝒔 = 𝟏 in Eq. (2.2), and then applying 
𝑑

𝑑𝑧
 both sides: 

 

         
𝑑

𝑑𝑧
𝐴𝐻𝑆(𝑧, 1, 𝑘) =

𝑑

𝑑𝑧
∑ (

𝑧𝑚𝒌+1

𝑚𝒌 + 1
+

𝑧𝑚𝒌+2

𝑚𝒌 + 2
+ ⋯ +

𝑧𝑚𝑘+𝑘

𝑚𝑘 + 𝑘
) (−1)𝑚

∞

𝑚=0

 

 

                                       = ∑ (𝑧𝑚𝒌 + 𝑧𝑚𝒌+1 + ⋯ + 𝑧𝑚𝑘+𝑘−1)(−1)𝑚

∞

𝑚=0

 

 

                                       = (𝟏 + 𝑧 + ⋯ + 𝑧𝒌−𝟏) − (𝑧𝒌 + ⋯ + 𝑧𝟐𝒌−𝟏) + (𝑧𝟐𝒌 + ⋯ + 𝑧𝟑𝒌−𝟏) − ⋯ 

 

                                       = (𝟏 + 𝑧 + ⋯ + 𝑧𝒌−𝟏) × (1 − 𝑧𝒌 + 𝑧2𝒌 − 𝑧3𝒌 + ⋯ 

 

                                       = (∑ 𝒛𝒏

𝒌−𝟏

𝒏=𝟎

) (∑ 𝑧𝒏𝒌(−𝟏)𝒏

∞

𝒏=𝟎

) 

 

                                     =
𝑧𝒌 − 𝟏

𝑧 − 𝟏
×

1

𝟏 + 𝑧𝒌
 

 
|𝑧| < 𝟏 

 

For other values of 𝒔 , the derivative of 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) results the series itself but with a lower order: 

𝑧
𝑑

𝑑𝑧
𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) = 𝐴𝐻𝑆(𝑧, 𝑠 − 1, 𝑘) 

 

(5.2) 
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Using lemma 5.1 in Eq. (5.2), we can express the generalized series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) as rational function for nonpositive integer order 

𝒔 

 

Corollary 5.1 for |𝑧| < 𝟏 , 𝒌 ∈ ℕ, the following holds by applying Eq. (5.1) to Eq. (5.2): 

 

𝐴𝐻𝑆(𝑧, 0, 𝑘) =
𝑧(𝑧𝒌 − 1)

(𝑧𝒌 + 1)(𝑧 − 1)
 

(5.3) 

 

Corollary 5.2 for |𝑧| < 𝟏 , 𝒌 ∈ ℕ, setting 𝒔 = 𝟎 in Eq. (5.2), and applying Eq. (5.3) gives: 

 

𝐴𝐻𝑆(𝑧, −1, 𝑘) =
𝑧(−𝑧𝟐𝒌 + 𝟐𝒌(𝑧 − 𝟏)𝑧𝑘 + 𝟏)

(𝑧𝑘 + 𝟏)𝟐(𝑧 − 𝟏)𝟐  
(5.4) 

 

More generally, for each 𝒎 positive integer repeated application of (𝑧
𝑑

𝑑𝑧
) to 𝐴𝐻𝑆(𝑧, 0, 𝑘) , gives: 

 

Corollary 5.3 for |𝑧| < 𝟏 , 𝒌, 𝒏 ∈ ℕ, the following holds: 

 

𝐴𝐻𝑆(𝑧, −𝑛, 𝑘) = (𝑧
𝑑

𝑑𝑧
)

𝒏

(
𝑧(𝑧𝒌 − 1)

(𝑧𝒌 + 1)(𝑧 − 1)
) 

(5.5) 

 

 

6. Conclusion 

In this paper, we introduced a new generalization of the alternating harmonic series given by Eq. (2.1), a special case of this 

generalized reduces to the generalized alternating Harmonic series 𝑺𝒌 defined in Eq. (1.1), we studied the convergence of this 

generalized, and demonstrated relationships with the family of zeta functions such as Eq. (3.2), Eq. (3.4). We also obtained the 

duplication formula in Eq. (3.3) and presented an integral representation of this generalized series in Eq. (4.1). Finally, we deduced 

a recurrence relationship for the generalized and showed that for nonpositive integer order 𝑠 the generalized series 𝐴𝐻𝑆(𝑧, 𝑠, 𝑘) is 

a rational function. 

 

However, it is important to expand future studies to gain a more comprehensive understanding of the new series and its 

applications. By exploring a wider range of values and delving deeper into the intricacies of this new generalization, researchers 

can uncover additional features and properties. Additionally, researchers can improve upon the new version and further generalize 

the series, discovering even more interesting and exciting properties. This approach will enhance the overall knowledge and 

applications of the new series in mathematics. 
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