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| ABSTRACT 

Nowadays, we face many equations in everyday life, where many attempts have been made to find their solutions, and various 

methods have been introduced. Many complex problems often lead to the solution of systems of equations. In mathematics, 

linear programming problems is a technique for optimization of a linear objective function that must impose several constraints 

on linear inequality. Linear programming emerged as a mathematical model. In this study, we introduce the category of ABS 

methods to solve general linear equations. These methods have been developed by Abafi, Goin, and Speedicato, and the 

repetitive methods are of direct type, which implicitly includes LU decomposition, Cholesky decomposition, LX decomposition, 

etc. Methods are distinguished from each other by selecting parameters. First, the equations system and the methods of solving 

the equations system, along with their application, are examined. Introduction and history of linear programming and linear 

programming problems and their application were also discussed. 
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1. Introduction 

Nowadays, we face many equations in everyday life, where many attempts have been made to find solutions, and various methods 

have been introduced. Many complex problems often lead to the solution of equations systems. 

In mathematics, linear programming problems is a technique for optimization of a linear objective function that must impose 

several constraints on linear inequality. Informally, linear programming uses a linear mathematical model to get the best output 

(e.g. maximum profit, minimum work) according to given conditions (for example, only 30 hours per week, illegal work not done, 

etc.). More formally, in a polygon or polygon on which a function with real value is defined, the goal is to find the point in these 

conditions where the objective function has the most or the least value. These points may not be available, but if available, 

searching among the vertices of a polygon will ensure that at least one of them is found [Ahmadi, 2011]. 

 

Solving the problem by linear inequality dates back to the Fourier area. Linear programming emerged as a mathematical model 

and became clear during and after World War II that planning and coordination of various projects and the efficient use of scarce 

resources were a necessity. The US Air Force Optimized Planning Team began its serious work in June 1947. The result was the 

invention of the simplex method by Jorj. B. Dantzik at the end of the summer of 1947. Linear programming is interested in 

economists, mathematicians, statisticians, and government agencies. In the summer of 1949, a planning conference was held to 

plan expenditures and returns under the auspices of the Cowles Committee for Economic Research. Papers presented at this 

conference were compiled shortly afterwards in 1951 by T.C. Koopmans in a book entitled Production Activity Analysis and 
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Allocation. In the same year, Janvan Neumnn developed the theory of duality, and Leonid Khashian, a Russian mathematician, used 

simple techniques in pre-Dantesik economics, winning the 1975 Nobel Prize in Economics [Tofiq, 2008]. In this study, linear 

programming by the ABS method was investigated. 

 

2. Solving Linear Equations SystemsIf F is a field, find n scalar nxxx ,...,, 21  in the following Equation; 

...

...

.

.

.

...

n n

m n n

n n mn n m

A x A x A x b

A x A x A x b

A x A x A x b

   

   

   

11 1 12 2 1 1

1 22 2 2 2

1 1 2 2

 

where 
mb R , 

m nA R  , nj 1 and mj 1 . The above equation is called m equation in n unknown linear. Each 

n of 
n

xx ,...,
1

elements that hold in any of the above equations is called a system solution. This equation is briefly in the form of; 

bAx   

A is matrices of equation coefficients, x unknown vectors and b is the right value. 

Tip 1. If the equation has at least one solution, it is consistent; and inconsistent if it does not have a solution at all [Zahedi, 2009]. 

First, two methods were used to solve these types of equations, which were: 

 

2.1 Cramer's Method 

One of the applications of determinants is this method, which is used to obtain the solutions of equation sets bAx  . Thus, if 

the determinants 𝐴
 
is opposite to the zero )(det A and 

k
A is the displacement matrix of column A with the right vector 

)(b , then; 

det  det  det 
,     , ...,     .

det  det  det 

n

n

A A A
x x x

A A A
  1 2

1 2
 

Note: The Cramer's rule is used only to solve a system of equations whose coefficient matrix is non-odd and whose order is very 

small. ( )n 10 [ Abbasi, 2011] 

(det( ) )A   

 

2.2 Inverse Matrix Method 

bAx  can also be solved in this way; if there is an invertible matrix, its determinants must be zero. Therefore, we have the 

following assumption: 

.Ax b A Ax A b x A b      1 1 1
 

 

As seen, calculating the determinants by Cramer's rule and the invertible matrix by the inverse matrix method is not easy when the 

coefficient matrix has large dimensions. Therefore, these methods are not widely used, and therefore mathematicians have sought 

newer methods that are generally divided into two categories: 1- Direct methods and 2- Repetitive methods [Jahanshahloo, 2004]. 

 

2.3 Linear Programming 

We begin our discussion by formulating a specific type of mathematical programming problem. As you can see below, any linear 

programming problem can be designed this way. [Tehran, 1993] 

 

A) Variables 

Unknown values are the equation that must be decided. 
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B) Restrictions  

The governing conditions of the problem are expressed as a number of mathematical equations or inequalities. 

 

C) Objective function 

It is a linear expression in which the objective of solving a problem is specified. The objective function may be Max or Min. 

The general form of linear models is as follows: 

 

... n nZ c x c x c x   1 1 2 2 (  Min or Max) 

1
b  or = or . .   .... n ns t a x a x a x   11 1 12 2 1   

2
b  or = or .... n na x a x a x   21 1 22 2 2   

m
b  or = or ...m m mn na x a x a x   1 1 2 2   

unrestricted , ,..., nx x x 1 2  or      

Here, 
nn

xcxc  ...
11

is objective functions (or standard functions) that need to be optimized and denoted by Z. Coefficients 

are , ...,   ,  
n

c c c
1 1

coefficients of the objective function (known) and , ...,   ,  
n

x x x
2 1

decision variables (variables, structural 

variables, or activity levels) that need to be specified. Restricted 
i

b or = or  


n

j jij
xa

1
indicates the first constraint (implicit 

or functional, structural or technical), and the 
ij

a coefficients are called technical coefficients. 

The column vector whose first component is 
i

b is called the right vector. A set of 
1

xx
n
,..., variables that holds in all restricts 

called feasible region. 

 

The LP problem can be summarized as follows: 

(     )

. .                               , ,

                                         , ,

n

j j

j

n

ij j i

j

j

Max Min z c x

s t a x b i m

x j n







  

  





1

1

1000

1000

               )1 .1( 

 

The matrix shape (1. 1) is as follows: 

(     ) ...

. .            ...          

                 ...          

                .

                .

                .

                

n n

n n

n n

m

Max Min z c x c x c x

s t a x a x a x b

a x a x a x b

a

   

     

     

1 1 2 2

11 1 12 2 1 1

21 1 22 2 2 2

1 ...            

                 , ,...,       

m mn n m

n

x a x a x b

x x x

     

 

1 2 2

1 2

 

Where, 1 2( , ,..., )nC c c c  is objective function coefficients, ( , ,..., )t t

nx x x x 1 2
the vector of  

 یا   یا

 یا   یا
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variables,

11 12 1

1 2

      ... 

.        .          .

.        .          .

.        .          .

            

n

m m mn

a a a

A

a a a

 
 
 
 
 
 
 
 

 is restricted coefficient matrix (technical coefficients), and ( , ,..., )t t

mb b b b 1 2
is the 

requirements vector. 

 

In economic problems, maximization and minimization problems are often seen in a special way, which we call the focal 

(conventional) form. The simplex method also specially solves the problem, which we call the standard form. Table (1) shows both 

focal and standard forms of maximization and minimization problems [Esmaeili, 2001]. 

 

Table 1- Focal Shape and Standard of Maximization and Minimization 

Minimization Maximization  

 

      . .  

              

Min Z Cx

s t Ax b

x







 

 

      . .  

              

Max Z Cx

s t Ax b

x







 Focal (Conventional) 

 

      . .  

              

Min Z Cx

s t Ax b

x







 

 

      . .  

              

Max Z Cx

s t Ax b

x







 Standard 

 

3. Linear Programming Hypotheses 

To illustrate an optimization problem in linear programming, several mandatory assumptions are needed in the problem 

formulation discussed earlier [Spedicato, 2003]. 

3.1 Proportionality Assumption  

The proportionality assumption means that more use of activity j costs more; i.e., there are no savings or discounts or savings and 

no start-up costs to start the activity. 

3.2 Additivity Assumption 

The additivity assumption ensures that the total cost is the sum of the individual costs and the total share or restriction i is the 

total share of the individual activities. In other words, there are no substitution or interaction effects between activities. [Spedicato, 

1997]. 

3.3 Divisibility Assumption  

The divisibility assumption states that decision variables can be divided as much as necessary and are, therefore, allowed to take 

incorrect values. 

 

3.4 Certainty Assumption  

The coefficients of 
jiji

cab ,, are certain, and according to the certainty Assumption, no probable or accidental element is 

inherently present in demand, cost, prices, existing industries, applications, etc.; these coefficients should be approximated with 

their equivalent if there is any probable or accidental element [Zhang, 1998]. 

4. Problem Manipulation  

With a series of conversions, any LP problem can be converted to any other form of LP problem; even some non-linear problems 

can be turned into an LP problem. 

4.1 Convert the Objective Function from Maximum to Minimum and Vice Versa 
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Assumption: If we want to minimize the objective function 
nn

xcxcZ  ...
11

Max, it is enough to multiply all the 

coefficients of the objective function by negative. In this case, the solution method will change to Min 

nn
xcxcxcZ  ...

2211
, but note that to equalize the two objective functions at the end of solving the minimization 

problem, we must multiply the value of the minimization objective function by negative as follows: 

nnnn xcxcMinxcxcMax ......    1111  

Note that the nature of the coefficient of two negatives is different; the first negative changes the method, and the second negative 

equals the value of the two functions. 

4.2 Change the Inequality Direction  

In LP problems, we allow the unequal sides to be multiplied by the negative to change the inequality direction. For example: 

bqxpxbqxpx  2121  

4.3 Inequalities and Equalities 

To convert equality to inequality, equality can be written as two inequalities: 

1 2

1 2

1 2

px qx b
px qx b

px qx b

 
   

 
 

And to convert inequality to equality, you can do the following: 

1 2 1 2

1 2 1 2

, 0

0

px qx b px qx S b S

p x q x b p x q x S b S

      

             
 

Note that SS , are generally called auxiliary variables. 

4.4 Convert Absolute Value of Restrictions 

The following restrictions can be divided into two linear restrictions: 

1 2

1 2 1 2

1 2

  
px qx b

px qx b b px qx b
px qx b

 
        

  
 

Note that the following restriction cannot be construed as an LP model, and these restrictions will be discussed in proper planning. 

1 2

1 2

1 2

px qx b

px qx b or

px qx b

 


   
   

 

Because only one of these two must always be present, the problem is not an LP problem. 

4.5 Unrestricted Variables 

Method 1) Suppose variable 
j

x is an unrestricted variable (free in sign); it can be replaced by two unrestricted variables as follows: 

, 0j j j j jx x x x x       
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Besides, if 
j

x  unrestricted with absolute value appears in the objective function, then 
jx  can be substituted as follows with two 

restricted variables: 

, 0j j j j jx x x x x       

Method 2) If in the first method, we have k  unrestricted variables in the problem, we can replace 
j

x  variables 

 
jj

xxMaxx :   instead of all the variables: 

0 , 1,...,j j j jx x x x j k      

Method 3) If 
jj

lx  can be written as 
jj

lx  and by changing the variable 
jjj

lxx  so that it is 
j

x , the variables 

can be restricted, and if 
jj

ux  it can be written in the same way as 
jj

xu and by changing the variable 

jjj
xux  so that it is 

j
x , the variables would be restricted. 

Method 4) If 
jj

ux  then it can be written as 
jjjj

uxux  , and using the third method mentioned, the variables can 

be restricted. But if it is 
jj

lx  , the problem will not be simply the above, and this will be discussed in integer programming, 

and with a variable of zero and one, the problem can be solved. 

4.6 Maximin and Minimax Objective Function 

Consider the  ),  (
2121

342 xxxxMaxMin  objective function. This objective function is a composite objective 

function, and the objective function of LP problems has only Max or Min. This problem can be solved with a simple variable change. 

Suppose  
2121

342 xxxxMaxy  , , then we have: 

1 2

1 2

min

2 4

3

y

s t x x y

x x y

  

 

 

4.7 Geometric Solution 

Consider the problem 

min   

 .     

z cx

s t Ax b

x





 

, every x  that holds in Ax b inequalities, it is the solution of the problem, and if it 

holds in condition x  , we call a feasible solution to the problem. 

The set S is defined as follows: 

  xbAxxS ,
 

is a linear programming problem in the set of feasible or non-feasible solutions. 
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4.8 The Optimal Solution 

 We call Sx *
the optimal Solution S  if: 

*( )x x S Cx Cx     

We now examine the concepts mentioned in this section with an example of two decision variables. 

Example 

Consider the following problem:  

                    

 

 

 

 

 

 

 

To solve the linear programming problem, we first draw all the constraints equally, and then, by examining an arbitrary point from 

the two regions created by this line, we determine the desired region that its solution is unequal, sharing all the solutions of the 

inequalities is the feasible region of the problem. 

Note that the polygon OABC shares all four quadratic solutions x x 1 2 6 , , ,x x x x    2 1 1 22 8. It is observed that 

S is the feasible region of the problem, which is obtained by sharing all the inequalities of the problem. 

Method 1) To obtain the optimal solution, we first draw the line z x x   3 and then move the objective function parallel 

to itself and in the direction of maximum reduction ZC)(


 , the last point that the line Z will have with S will be the optimal 

point of the problem in which Problem ( , )B
4 14

3 3
with the value of the objective function will be 

* 46

3
Z


 . 

Method 2) S has 4 vertices. 

First, we draw the vectors perpendicular to the constraints passing through the vertex points to the outside of the area to be zoned, 

and we hatch the resulting cone. In the problem of minimization 



C  (in the problem of maximization we place 



C( parallel and 

in the same direction on all vertex points, the vertex that 



C  (at max. 



C ) falls inside the cone is the optimal vertex for the 

corresponding problem. As can be seen, the point ( , )B
4 14

3 3
is the optimal point of the minimization problem (Figure 1). 

 

 

1 2

1 2

1 2

1 2

in     3

6

2 8

, 0

M z x x

s t x x

x x

x x

  

  

  


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Figure 1- Optimal minimization problem 

 

 

 

 

 

 

In the geometric method and drawing the shape, we may encounter 4 modes to find the optimal solution with each of the 

expressed methods: 

 

A) The finite unique optimal solution: In this case, there is only one optimal point for the problem. 

Note 1. In the case of a finite unique optimal solution, the set of optimal points is a single member. 

 

Figure 2- Finite Optimal Solution 

Note 2. As shown in Figure (2) (b), the justified area can be unlimited, but the optimal solution is limited. 

B) Infinite solution: In this case, the solution is infinite. 

According to Figure (2), it can be seen that the movement of the objective function in the opposite direction of 



C to minimize the 

objective function, the objective function never leaves the area, so the value of the objective function will reach  miles and 

the solution to the minimization problem will be infinite. 

Note 3: The necessary condition for the optimal infinite solution is an infinite justified area. 

Note 2: In the case of the infinite optimal solution, the set of optimal points is empty. 

Note 5: In practical problems, if the problems find infinite optimal solutions, the problem modeling must have been done 

incorrectly. 
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C) Finite optimal solution: In this case, if the optimal objective function contains more than one optimal point, we will have finite 

multiple optimal solutions; 

 

 

Figure 3 - The Finite Multiple Optimal Solution  

As can be seen from Figures (3) (a) and (b), the problem has more than one optimal point (infinitely optimal point). 

Note 6: In the case of finite multiple optimal solutions, the set of optimal points is infinite points. (If the problem has more than 

one optimal point, it has an infinite optimal point). 

Note 7: In two-dimensional space, the necessary condition for the multiple optimal solutions is the parallelism of the objective 

function with one of the constraints. 

D) Impossible (unjustified): In this case, there is no commonality between all the constraints of the problem. 

4.9 Requirement Space 

The problem of linear programming can be solved and interpreted geometrically in another space called requirement space. 

Consider the following equation: 

in         Z

0

M Cx

s t Ax b

x



 



 

We rewrite the problem as follows: 

1

in      Z

0 1,...,

n

j j

j

j

M Cx

s t a x b

x j n





 

 

  

The vectors are ...     
n

a ،،a،a
2 1

rows A, and we want to find the negative 
1

xx
n
,..., so that 




n

j
jj

n

j
jj

bxaxcZ
11

, is 

minimized. 

Note that the set of vectors 


n

j
jj

xa
1

in which there are nxxx ,...,, 21 cones created by the 
12

aaa
n

,,... vectors is, 

therefore, problematic if the vector b is placed in this cone. 
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4.10 ABS solution to a specific linear programming problem 

We now consider the problem of linear programming, which nm RxRbnmmrankA   ,   ,  ,    

bAxxcT  :max                )1( 

And using the above problem is equivalent to: 

min( ) :         ,  T T T m nc M C H q R q R              )2( 

We have, 

cMc T   

 

 

 

   ,

   ,

   

i

i

i

I i c

I i c

I i c





 

 



 

4.11 Theorem 

Suppose we use the ABS algorithm for A as in the proposition of 308, then we have bAx T

Wm

*
: 

 (a) If 0Hc  then problem (1) is infinite and has no solution. 

(b) If 0Hc  and I  then problem (1) is infinite and has no solution. 

(C) If 0Hc  and I  then an infinite number of optimal solutions for (12. 3) form 





Ij

jj

T MeqHxx *
 

We have, 

nRq   و
j

  OIj   ، 

Are arbitrary and ej is the unit vector of j in Rm. 

4.12 Proof: 

(a) Given (2), Hc vectors are not zero, q can be chosen appropriately to obtain the desired small value for the objective function. 

We now assume that 0Hc  using the above symbol, such as Problem (1), can be written as follows: 





 


Ij

jjj

Ij

jj

Ij

jj occz   :min   

 (b) Since I  after 
Ik    is available. By placing tek  then, we have; Z  when t  is therefore 

infinite and has no solution. 
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 (c) In this case  
 


Ij Ij

jj
jcz



 , where the z-minimizers are written as 



Ij

jj
e , in which 

 Ij
j

 ,  are arbitrary, so the optimal solutions in (1) are 



Ij

ji

T MeqHxx *
, in which 

nRq   ,  0
j

r

, and 
Ij    are arbitrary. 

Note 11. 3: According to the characteristics of ABS, 0THA  and hence H nullity=AT is the condition for Hc . Regarding 

Koohan Taker condition uAc T , for u, since AT has a full column rank, then u is unique. The c
d

1
 vector, on the other hand, 

holds cuAT   because lines 
1

mW
A  are linearly independent, and the solution cuAT   is equivalent to the solution 

   
m m

T

w wA A u A c 1 1
. 

Since IAA T

wm
1

 then c
d

cAu
mw

11     . So when wi are selected, so that 0mdc,    has the same symbol. Just as 

multiplications (Lagrange) are components. If 0c  then the problem is infinite and has no solution, then we find that for 

Ii   , 0
i

u  and for every 
Ii   , 0

i
u . If c  then, there are an infinite number of optimal solutions to the problem. 

Here, as expected for optimization, for each i, 0
i

u . Using the above results, the following algorithm is proposed to solve the 

linear programming problem (1): 

1) We use the ABS algorithm with matrix A. 

T

wm
A

 
 and   H؛  

T

w

TT

m

m
dAM

AHwd





      

)det(
1

 

Calculate. 

2) If 0Hc  then stop (the problem is infinite so there is no solution ). 

3) Hypothesis cMc T  and its form are in the form of the following sets: 

 

 

 

   

   

   

i

i

i

I i c

I i c

I i c





 

 

 

 

4) If I  then stop (it is an infinite problem and has no solution ). 

5) If 

*  
m

T

wx A b ،) I ( 
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Calculate. 

Which are the optimal solutions  





Ij

jj

T MeqHxx *
 

Where, 

O

j

n IjRq  ,,   0  

And are arbitrary numbers, and ej denotes the unit vector j in 
mR . Stop. 

We have used ABS algorithms to solve real linear equations for full-rank linear inequalities and linear programming problems in 

which the number of inequalities is less than or equal to the number of variables, and the optimal and infinity conditions in the 

algorithm are obtained. 

5. Conclusion 

In this study, the ABS method is proposed to solve various equations and linear inequalities. This algorithm is a well-defined 

algorithm when the rank of the matrix A (coefficient matrix) is equal to m. In this case, the method is more efficient, and the number 

of calculations is less. 

These methods have the ability to produce suitable solutions for inactive equations. They are also effective in solving large 

equations. They are more efficient at solving large equations (large m or n) than conventional direct methods. The ABS method is 

also used to solve linear programming problems. This method is equivalent to the Symplex method with the Bland rule in linear 

programming to find a feasible region that can be found from bAx   linear inequality equations. 

nmRxRbRA nmnm   ,,,  

Which is used in a finite number of steps, and the results obtained for ABS methods are not only theoretically important but also 

remarkable from the point of view of numerical calculations. 

5.1 Research Suggestions 

Here are some of the works that can be done in future studies: 

1- Applying the ABS method to solve the system of nonlinear equations with the incomplete rank 

2- Applying the ABS method to solve the system of nonlinear inequalities with the incomplete rank 

3- Applying the ABS method to solve the system of nonlinear equations with full rank 

4- Applying the ABS method to solve integer mixed planning problems 

5- Applying the ABS method to solve integer planning problems 

6- Applying the ABS method to solve quadratic planning problems 
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