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| ABSTRACT 

Metaheuristic optimization algorithms (Nature-Inspired Optimization Algorithms) are a class of algorithms that mimic the 

behavior of natural systems such as evolution process, swarm intelligence, human activity and physical phenomena to find the 

optimal solution. Since the introduction of meta-heuristic optimization algorithms, they have shown their profound impact in 

solving the high-scale and non-differentiable engineering problems. This paper presents a comparative study of the most widely 

used nature-inspired optimization algorithms for solving engineering classical design problems, which are considered 

challenging. The teen metaheuristic algorithms employed in this study are, namely, Artificial Bee Colony (ABC), Ant Colony 

Optimization (ACO), Biogeography Based Optimization Algorithm (BBO), Covariance Matrix Adaptation Evolutionary Strategy 

(CMA-ES), Cuckoo Search algorithm (CS), Differential Evolution (DE), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), 

Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO). The efficiency of these algorithms is evaluated on 

teen popular engineering classical design problems using the solution quality and convergence analysis, which verify the 

applicability of these algorithms to engineering classical constrained design problems. The experimental results demonstrated 

that all the algorithms provide a competitive solution. 
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1. Introduction 

Optimization refers to the process of finding the best possible solution for a problem or achieving the highest level of performance 

within given constraints. It involves maximizing or minimizing an objective function by adjusting variables or parameters. 

Optimization is paramount in many applications, such as engineering, economics, computer science, business activities and 

industrial designs. The optimization algorithms aim to find the optimal solution that maximises efficiency, effectiveness, profitability 

and minimises energy consumption and costs. Due to incompetency of classical optimization algorithms in solving real world 

optimization problems, which are non- differentiable, large –scale and highly non-linear, there is a need to develop robust, efficient 

and problems characteristics free computational algorithms, that can solve problems numerically irrespective of their particular 

characteristics. Drawing inspiration from nature to develop computationally efficient algorithms is one way to deal with real-world 

optimization problems and this kind of algorithm is called Nature-Inspired Optimization Algorithms (Meta-Heuristic Algorithms). 

Meta-Heuristic algorithms typically start with an initial solution and iteratively improve it by exploring the search space using a set 

of heuristic rules. These rules guide the search process towards the promising regions of the search space, allowing the algorithm 

to escape local optima and find globally optimal or near-optimal solutions [Yang, 2020]. Rechenberg and Schwefel introduced the 

first meta-heuristic optimization algorithm in the early 1960s. They developed the (1+1)-ES algorithm which is inspired by 

Darwinian evolution theory [Bansal, 2019]. Since then, meta-heuristic algorithms have attracted a lot of attention from researchers 
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worldwide and many optimization algorithms have been developed. The most popular meta-heuristic algorithms are such as 

Evolutionary Strategy (ES) [Rechenberg, 1997], Genetic Algorithm (GA) [Holland, 1993] and Differential Evolution (DE) [Storn, 1997] 

inspired from Darwinian theory, Particle Swarm Optimization (PSO) [Kennedy, 1995] inspired from foraging behavior of birds 

flocking or schooling of fish, Ant Colony Optimization Algorithm (ACO) [Dorigo, 2004] inspired from foraging behavior of ant, 

Artificial Bee Colony algorithm (ABC) [Karaboga, 2005] inspired from foraging behavior of honey bee, Spider Monkey Optimization 

algorithm (SMO) [Bansal, 2014] inspired from foraging behavior of spider monkey, Grey Wolf Optimizer (GWO) inspired by foraging 

behavior of grey wolfs [Mirjalili, 2014], Biogeography-Based Optimization (BBO) [Simon, 2008] inspired from 

emigration/immigration of individuals from one islands to another, Firefly Algorithm (FA) [Yang, 2010, Yang, 2009], Cuckoo Search 

(CS) algorithm [Yang, 2010, Yang, 2009], Cuckoo Optimization Algorithm (COA) [Rajabioun, 2011], Gravitational Search Algorithm 

(GSA) [Rashedi, 2009],Teaching-Learning Based Optimization algorithm (TLBO) [Rao, 2012] inspired from the influence of teacher 

on learners and so on. Recently a few mathematically inspired Meta- heuristics optimization algorithms have also been developed. 

These algorithms adopt geometric, trigonometric and analytical functions in their search equations to direct the solution toward 

a promising area of search space.  There are some of them, such as Sine-Cosine Optimization algorithm (SCA) [Mirjalili, 2016], 

Spherical Search Optimizer (SSO) [Zhao, 2020], The Arithmetic Optimization Algorithm (AOA) [Abualigah, 2021], Stochastic Fractal 

Search (SFS) [Salimi, 2015] and Tangent Search Algorithm (TSA) [Layeb, 2022].  

Engineers solve problems by creating new products, systems, or environments. Before creating something, it is very important to 

make the mathematical formulation of the problem, then try to find the parameters of the problem to maximize efficiency, 

effectiveness, profitability, and minimize the energy consumption and costs. On many occasions, engineering optimization design 

problems involve a variety of decision variables and complex structured objectives, and constraints. The traditional optimization 

techniques often face difficulty in solving such optimization problems in their original form. Therefore, this work presents a 

comparative study of the metaheuristic optimization algorithms for solving engineering classical design problems. This work is 

done in order to recognize the best algorithms for solving a particular engineering design problem. The remaining of this paper is 

organized as follows:  Second section describes the study's methodology. The third section briefly introduces the metaheuristic 

optimization algorithms used in this paper. The fourth section illustrates the engineering design problems including objective 

function and their constraints. The fifth section provides the experimental result and solution analyses of each optimization 

algorithm. Finally, Section six, summarizes the work which is done in this paper and explains future perspectives and suggestions 

regarding this research.  

2. Methodology 

This paper presents a comparative study of meta-heuristic optimization algorithms for solving engineering classical design 

problems. This work aims to introduce the best algorithm for each engineering problem. The work is done in three steps as follows:  

Firstly, fifteen well known metaheuristic optimization algorithms, namely, Artificial Bee Colony (ABC), Ant Colony Optimization 

(ACO), Biogeography Based Optimization Algorithm (BBO), Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), Cuckoo 

Search algorithm (CS), Differential Evolution (DE), Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), Gravitational Search 

Algorithm (GSA) and Particle Swarm Optimization (PSO) opted from among metaheuristic algorithms in the literature, to camper 

their performance in solving engineering design problems. Although several improved versions of the opted algorithms are in the 

literature, this study is done by their standard versions. Then, all metaheuristic algorithms are briefly introduced. Secondly, the teen 

widely used engineering design problems, namely, speed reducer design, tension/compression spring design, pressure vessel 

design, Three-bar truss design, gear train design, cantilever beam design, I-beam vertical deflection design, tubular column design, 

piston lever design and welded beam design are selected to evaluate the performance of optimization algorithms. Thirdly, the 

algorithms and problems are coded in the MATLAB program. Finally, after 10 independent runs of the program, the average of 

each problem's best solution and cost are recorded in the tables. In order to visualize and compare the performance of the 

investigated algorithms, the obtained best cost is plotted for each problem, and for the ease of readability, the best solution 

obtained among the algorithms is highlighted in boldface. The detailed background of the experiments is given in Table 1 below. 

Table 1.  Experimental background details. 

Name    Setting 

System Manufacturer  Acer 

Processor 
AMD A4-7210 (2.2GHz) APU with AMD Radeon R3 Graphics, 

1800 Mhz, 4 Core(s), 4 Logical Processors (s) 

HDD 1000GB 

RAM 4GB 

Operation System  Windows 10, x64-Based PC 

Language  MATLAB 2014a 
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3. Meta-Heuristic Algorithms 

This section briefly describes the nature inspired optimization algorithms (meta-heuristic algorithm) used in this study for solving 

engineering problems.  

3.1 Genetic Algorithm (GA) 

Genetic algorithm (GA) is the most popular and widely used computational technique inspired by natural selection and genetics 

principles.  John Holland and his collaborators developed it in the 1960s and 1970s [Holland, 1992]. It is used to solve complex 

optimization problems with the goal of finding the best solution among a large set of possible solutions. The genetic optimization 

algorithm then applies several genetic operators to evolve the population over multiple generations. These operators include 

selection, crossover, and mutation. Selection involves choosing the fittest individuals based on their fitness function, which 

evaluates how well each individual solves the problem. Crossover combines two parent chromosomes to create offspring by 

exchanging genetic material between them. Mutation introduces small random changes in the offspring's chromosomes to 

maintain diversity in the population. After applying these operators, a new population is created and evaluated using the fitness 

function. This process continues for several generations until a termination condition is met.  

3.2 Differential Evolution 

Differential Evolution (DE) is a nature inspired optimization algorithm that was introduced by Storn and Price in 1997s [Storn, 1997]. 

DE operates on a population of candidate solutions called individuals or vectors. Each individual represents a potential solution to 

the optimization problem. The algorithm iteratively improves the population by applying mutation, crossover, and selection 

operations. The mutation operation creates new trial individuals by perturbing the existing individuals in the population. This 

perturbation is achieved by adding a scaled difference vector between randomly selected individuals to another individual. This 

process introduces exploration into the search space. The crossover operation combines information from the trial individuals with 

the original individuals to create offspring. It determines which components of the trial individual will be inherited by the offspring 

and which components will be inherited from the original individual. This process allows for exploitation of promising solutions. 

The selection operation compares each offspring with its corresponding original individual and selects the better one based on 

their fitness values. The selected offspring replaces its corresponding original individual if it has higher fitness. DE continues this 

iterative process until a termination criterion is met. 

3.3 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a computational technique inspired by the social behavior of bird flocking or fish schooling. 

It was developed by Kennedy and Eberhart in 1995s [Kennedy, 1995]. In PSO, a group of particles move through a search space to 

find the optimal solution to a given problem. Each particle represents a potential solution and has its own position and velocity in 

the search space. The movement of particles is influenced by their own best-known position (pbest) and the best-known position 

among all particles in the swarm (gbest). The pbest represents the best solution each particle finds, while the gbest represents the 

global best solution found by any particle in the swarm. At each iteration, particles update their velocities based on their current 

positions, pbest, and gbest. The new velocity determines how far and in which direction a particle should move. Then, particles 

update their positions based on their new velocities. The key idea behind PSO is that particles communicate with each other 

through their pbest and gbest information. This allows them to explore different regions of the search space efficiently. Particles 

converge towards an optimal solution over time by continuously updating their positions and velocities based on this information 

exchange.  

3.4 Artificial Bee Colony 

The Artificial Bee Colony (ABC) optimization algorithm is a metaheuristic algorithm inspired by the foraging behavior of honey 

bees. It was proposed by Karaboga in 2005s as a simple and efficient optimization technique for solving complex optimization 

problems [Karaboga, 2005]. In ABC, the search process is modeled based on the behavior of three types of bees: employed bees, 

onlooker bees, and scout bees. The employed bees explore the search space by visiting food sources (solutions) and evaluating 

their quality using an objective function. They then share information about their food sources with onlooker bees through a 

process called waggle dance. Onlooker bees select food sources based on their quality information and perform local search 

around those solutions to improve them further. This process allows the algorithm to exploit promising regions in the search space. 

Scout bees are responsible for introducing diversity into the population. If an employed bee exhausts its limit of trials without 

finding a better solution, it becomes a Scout bee and randomly explores new solutions in the search space. The quality of each 

solution is evaluated using an objective function, and the algorithm iteratively updates the population by employing different 

strategies like exploitation and exploration. 

3.5 Biogeography-based optimization algorithm 

Biogeography-Based Optimization (BBO) algorithm is some nature-inspired optimization techniques that draw inspiration from 

the biogeography. It was proposed by Dan Simon in 2008s [Simon, 2008]. Biogeography is the study of the distribution of species 
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and ecosystems across different geographical regions. BBO algorithms simulate the process of migration/immigration and 

evolution of species in order to solve optimization problems. The basic idea behind these algorithms is to represent potential 

solutions to an optimization problem as "habitats" and use migration/immigration and evolution operators to search for the best 

solution. The main feature of BBO is migration (crossover), mutation and selection.  

3.6 Covariance Matrix Adaption Evolution Strategy  

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic optimization algorithm used for solving complex 

optimization problems. It was proposed by Nikolaus Hansen, Ostermeier Andreas, and Gawelczyk Andreas in 1995s [Hansen, 1995]. 

It is a derivative-free, population-based algorithm belonging to the evolutionary algorithms family. CMA-ES employs a covariance 

matrix to model the distribution of candidate solutions in the search space. This matrix is adapted over generations to guide the 

search towards promising regions. CMA-ES utilizes a combination of global exploration and local exploitation strategies. It explores 

the search space by generating new candidate solutions from the current distribution and evaluates their fitness values. The 

algorithm then updates the distribution parameters based on the success of these new solutions, favoring those with better fitness. 

One key feature of CMA-ES is its ability to handle ill-conditioned or high-dimensional problems by adapting its step sizes and 

covariance matrix accordingly. This adaptability allows it to efficiently navigate complex landscapes with varying degrees of 

difficulty.  

3.7 Grey Wolf Optimizer 

The Grey Wolf Optimizer (GWO) is a nature-inspired metaheuristic algorithm that mimics the hunting behavior of grey wolves in 

a pack. Seyedali Mirjalili proposed it in 2013s and has gained popularity due to its simplicity and effectiveness in solving 

optimization problems [Mirjalili, 2014]. In GWO, a population of candidate solutions, represented as grey wolves, is iteratively 

updated to search for the optimal solution. The algorithm imitates the wolves' social hierarchy and hunting behavior to balance 

exploration and exploitation during the search process. The GWO algorithm consists of four main steps: initialization, updating the 

position of alpha, beta, and delta wolves, updating the position of other wolves, and boundary handling. 

3.8 Cuckoo Search Algorithm 

Cuckoo Search Algorithm (CS) is a nature-inspired optimization algorithm that was developed by Xin-She Yang and Suash Deb in 

2009s [Yang, 2010]. It is inspired by the breeding behavior of cuckoo birds, specifically their brood parasitism strategy. In nature, 

some species of cuckoo birds lay their eggs in the nests of other bird species, tricking them into incubating and raising their young. 

The host birds may eventually recognize and discard the foreign eggs from their nests. This behavior has led to an evolutionary 

arms race between cuckoos and host birds, where cuckoos continuously adapt their egg-laying strategies to increase their chances 

of successful reproduction. The Cuckoo Search Algorithm mimics this behavior by using a population of virtual cuckoos to search 

for optimal solutions in optimization problems. Each cuckoo represents a potential solution, and they lay eggs (new solutions) in 

different nests (search locations). The quality of each solution is evaluated using an objective function, which determines its fitness. 

CS incorporates several key components such as random walk steps, Levy flights, and a global discovery rate parameter that 

controls the balance between exploration and exploitation.  

3.9 Gravitational Search Algorithm 

The Gravitational Search Algorithm (GSA) is a metaheuristic optimization algorithm inspired by the law of gravity and the behavior 

of celestial bodies in space. It was proposed by Rashedi, Nezamabadi-pour, and Saryazdi in 2009s [Rashedi, 2009]. GSA mimics the 

gravitational forces between celestial bodies to search for optimal solutions in a given problem space. In this algorithm, each 

potential solution is represented as a celestial body, and their positions are updated based on the gravitational forces exerted by 

other bodies. The GSA starts with an initial population of celestial bodies randomly distributed in the search space. The fitness 

value of each body represents its quality as a solution to the problem being solved.  

 

3.10 Ant Colony Optimization Algorithm 

Ant Colony Optimization (ACO) is a metaheuristic algorithm inspired by the behavior of ants searching for food. It was first 

introduced by Marco Dorigo in the early 1990s [Dorigo, 2004]. ACO is primarily used to solve combinatorial optimization problems, 

such as the traveling salesman or vehicle routing problems. The algorithm mimics the behavior of real ants, which communicate 

with each other through pheromone trails to find the shortest (best) path between their nest and a food source. In ACO, artificial 

ants are used to explore the solution space of a given problem. 

4. Engineering Design Problems 

This section briefly describes the teen classical engineering design problems used in this study.  
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4.1 Problem 1. Speed Reducer Design Problem 

Figure 1 illustrate the speed reducer design problem. The speed reducer design problem is one of the benchmark structural 

engineering problems. This problem contains seven decision variables namely, face width, 𝑥1, module of teeth, 𝑥2, number of teeth 

on pinion, 𝑥3, length of first shaft between bearings, 𝑥4, length of second shaft between bearings 𝑥5, diameter of first shaft, 𝑥6, and 

diameter of second shaft, 𝑥7. The objective of the problem is to minimize the total weight of the speed reducer. There are nine 

constraints in the problem. The best obtained solutions of the problem by teen optimization algorithms are presented in Table 2 

and the convergence graph of the objective function, 𝑓(𝑥⃗), is plotted in figure 11. The mathematical model of the problem is given 

as follows: 

𝑓(𝑥⃗)  =  0.7854𝑥1𝑥2
2(3.3333𝑥3

2 + 14.9334𝑥3 − 43.0934) − 1.508𝑥1(𝑥6
2 + 𝑥7

2)  + 7.477(𝑥6
3 + 𝑥7

3) 
             +0.7854(𝑥4𝑥6

2 + 𝑥5𝑥7
2) 

Subject to 

𝑔1(𝑥⃗) =  −𝑥1𝑥2
2𝑥3 + 27 ≤ 0, 𝑔2(𝑥⃗) =  −𝑥1𝑥2

2𝑥3
2 + 397.5 ≤ 0, 𝑔3(𝑥⃗)  =  −

𝑥2𝑥3𝑥6
3

𝑥4
3 + 1.93 ≤ 0, 

𝑔4(𝑥⃗)  =  −
𝑥2𝑥3𝑥7

3

𝑥5
3 + 1.93 ≤ 0, 𝑔5(𝑥⃗)  =  10𝑥6

−3√(745𝑥4 𝑥2𝑥3⁄ )2 + 157,5 × 106 − 1100 ≤ 0, 

𝑔6(𝑥⃗) =  10𝑥7
−3√(745𝑥4 𝑥2𝑥3⁄ )2 + 1.69 × 106 − 850 ≤ 0, 𝑔7(𝑥⃗)  =  𝑥2𝑥3 − 40 ≤ 0, 𝑔8(𝑥⃗)  =  −

𝑥1

𝑥2
+ 5 ≤ 0, 

𝑔9(𝑥⃗)  =  
𝑥1

𝑥2
− 12 ≤ 0, 𝑔10(𝑥⃗)  =  1.5𝑥6 − 𝑥4 + 1.9 ≤ 0, 𝑔11(𝑥⃗)  =  1.1𝑥7 − 𝑥5 + 1.9 ≤ 0. 

Variables range 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 7.3 ≤ 𝑥4, 𝑥5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, 5 ≤ 𝑥7 ≤ 5.5. 

 

4.2 Problem 2. Tension/Compression Spring Design 

Figure 2 illustrate the tension/compression spring design problem. The objective of the problem is to minimize the weight of 

tension/compression spring subject to given constraints. In this problem, there are three decision variables: mean coil diameter, 

D, number of active coils, N, and wire diameter, d. The best obtained solutions of the problem by teen optimization algorithms are 

presented in Table 3 and the convergence graph of the objective function, 𝑓(𝑥⃗) is plotted in figure 12. The mathematical model of 

the problem is given as follows: 

Consider [𝑥1, 𝑥2, 𝑥3] = [𝑑, 𝐷, 𝑁] 
 𝑓(𝑥⃗) = (𝑥3 + 2)𝑥1

2𝑥2 

Subject to 

𝑔1(𝑥⃗) = 1 −
𝑥2

3𝑥3

71785𝑥1
4  ≤ 0, 𝑔2(𝑥⃗) =

4𝑥2
2 − 𝑥1𝑥2

12566(𝑥1
3𝑥2 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0, 

 

𝑔3(𝑥⃗) = 1 −
140.45𝑥1

𝑥2
2𝑥3

 ≤ 0, 𝑔4(𝑥⃗) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0. 

Variable range 0.05 ≤ 𝑥1 ≤ 2, 0.25 ≤ 𝑥2  ≤ 1.30, 2 ≤ 𝑥3 ≤ 15 

4.3 Problem 3. Pressure Vessel Design Problem 

Figure 3 illustrate the pressure vessel design problem. The purpose of the pressure vessel design problem is to minimize the 

welding, the material, and forming cost, 𝑓(𝑥⃗). There are four decision variables in the problem, namely, thickness of the head, 𝑇ℎ, 

thickness of the shell, 𝑇𝑠, length of the cylindrical section without considering the head, L and the inner radius, R and containing 

four constraints. The best obtained solutions of the problem by teen optimization algorithms are presented in Table 4 and the 

convergence graph of the objective function, 𝑓(𝑥⃗), is plotted in figure 13. The mathematical model of the problem is given as 

follows: 

Consider [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿] 

 𝑓(𝑥⃗) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3 

Subject to 

𝑔1(𝑥⃗) = −𝑥1 + 0.0193𝑥3  ≤ 0, 𝑔2(𝑥⃗) = −𝑥2 + 0.00954𝑥3  ≤ 0, 𝑔3(𝑥⃗) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0, 

𝑔4(𝑥⃗) = 𝑥4 − 240 ≤ 0, 

Variable range 0 ≤ 𝑥1, 𝑥2  ≤ 99, 10 ≤ 𝑥3, 𝑥4 ≤ 200. 
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4.4 Problem 4. Three-Bar Truss Design Problem 

Figure 4 illustrate the three bar truss design problem. This problem's objective is to minimise the structure's weight, subject to 

given constraints. The constraints here are deflection, stress and buckling constraints. The best obtained solutions of the problem 

by teen optimization algorithms are presented in Table 5 and convergence graph of the objective function, 𝑓(𝑥⃗), is plotted in 

figure 14. The mathematical model of the problem is given as follows: 

Consider [𝑥1, 𝑥2] = [𝐴1, 𝐴2] 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = (2√2𝑥1 + 𝑥2) × 𝑙 

Subject to 

𝑔1(𝑥⃗) =
√2𝑥1 + 𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0, 𝑔2(𝑥⃗) =
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0, 𝑔3(𝑥⃗) =
1

√2𝑥1 + 𝑥1

𝑃 − 𝜎 ≤ 0, 

Variable range 0. ≤ 𝑥1, 𝑥2 ≤ 1.  Where 𝑙 = 100𝑐𝑚 and 𝑃 = 𝜎 = 2KN/𝑐𝑚2 

4.5 Problem 5. Gear Train Design Problem 

Figure 5 illustrate the gear train design problem. The objective of this problem is to design a gear train that the gear ratio should 

be close to 
1

6.931
 in order to minimize the farming cost. The teeth of the gears namely, 𝑛𝐴, 𝑛𝐵, 𝑛𝐶 and 𝑛𝐷 are four decision variables 

of the problem. The best obtained solutions of the problem by teen optimization algorithms are presented in Table 5 and 

convergence graph of the objective function, 𝑓(𝑥⃗), is plotted in figure 15. The mathematical model of the problem is given as 

follows: 

𝑀𝑖𝑛 𝑓((𝑥⃗)) = (
1

6.931
−

𝑥3𝑥2

𝑥1𝑥4
)

2
 , Subject to 12 ≤  𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60 

4.6 Problem 6. Cantilever Beam Design Problem 

Figure 6 illustrate the cantilever beam design problem. The problem includes five hollow elements with square-shaped cross-

sections, so there is a total of five structural variables, because the thickness is constant. The objective of the cantilever beam 

design problem is to minimize the weight of the beam. The best obtained solutions of the problem by teen optimization algorithms 

are presented in Table 7 and convergence graph of the objective function, 𝑓(𝑥⃗), is plotted in figure 16. The mathematical model 

of the problem is given as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = 0.0624(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)  

Subject to; 𝑔1(𝑥⃗) =
61

𝑥1
3 +

37

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0. Variables range; 0.01 ≤ 𝑥𝑖 ≤ 100, 𝑖 = 1,2,3,4,5 

4.7 Problem 7. One Beam Vertical Deflection Problem 

Figure 7 illustrate the I-beam vertical deflection problem. The objective is to minimize the deflection of the beam. There are four 

decision variable in the problem namely, flange width, 𝑏, flange thickness, 𝑡𝑓, beam height, ℎ, and web thickness, 𝑡𝑤. The best 

obtained solutions of the problem by fifteen algorithms are presented in Table 8 and convergence graph of the objective function, 

𝑓(𝑥⃗), is plotted in figure 17. The mathematical model of the problem is given as follows: 

Consider [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑏, ℎ, 𝑡𝑤, 𝑡𝑓],  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) =
5000

𝑇1+𝑇2+𝑇3
 

𝑇1 =
𝑥3(𝑥2 − 2𝑥4)3

12
, 𝑇2 =

𝑥1𝑥4
3

6
, 𝑇3 = 2𝑥1𝑥4 (

𝑥2 − 𝑥4

2
)

2

 

Subject to 

𝑔1(𝑥⃗) = 2𝑥2𝑥4 + 𝑥3(𝑥1 − 2𝑥4) − 300 ≤ 0, 𝑔2(𝑥⃗) =
18 × 104𝑥1

𝐿1 + 𝐿2
+

15 × 103𝑥2

𝐿3 + 𝐿4
− 6 ≤ 0, 

𝐿1 = 𝑥1𝑥3 − 2𝑥4
3,𝐿2 = 2𝑥2𝑥4(4𝑥4

2 + 3𝑥1
2 − 2𝑥4), 𝐿3 = 𝑥1 − 2𝑥3

3𝑥4, 𝐿4 = 2𝑥2
3𝑥4, 

Variable range 10 ≤ 𝑥1 ≤ 50, 10 ≤ 𝑥2 ≤ 80, 0.9 ≤ 𝑥1 ≤ 5, 0.9 ≤ 𝑥1 ≤ 5, 

4.8 Problem 8. Tubular Column Design Problem 

Figure 8 illustrate the tubular column design problem. A tubular column is a structural element that consists of a hollow cylinder 

made of metal, concrete, or other material. It is commonly used in construction to support beams and other building elements. It 

can be used in structural design of bridges and other structures. The objective of the problem is to minimize the cost of building 

the column, using decision variable 𝑑, the mean diameter of the column, and 𝑡, the thickness of the column. The best obtained 

solutions of the problem by teen optimization algorithms are presented in Table 9 and convergence graph of the objective 

function, 𝑓(𝑥⃗), is plotted in figure 18. The final formulation for the cantilever beam design problem is shown as follows: 
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Consider [𝑥1, 𝑥2] = [𝑑, 𝑡] 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = 9.82𝑥1𝑥2 + 2𝑥1 

Subject to  

𝑔1(𝑥⃗) = 1.59 − 𝑥1𝑥2 ≤ 0, 𝑔2(𝑥⃗) = 47.4 − 𝑥1𝑥2(𝑥1
2 + 𝑥2

2) ≤ 0, 𝑔3(𝑥⃗) =
2

𝑥1
− 1 ≤ 0, 𝑔4(𝑥⃗) =

𝑥1

14
− 1 ≤ 0, 

𝑔5(𝑥⃗) =
𝑥1

8
− 1 ≤ 0, Variables range; 2 ≤ 𝑥1 ≤ 14, 0.2 ≤ 𝑥2 ≤ 0.8 

4.9 Problem 9. Piston Lever Design Problem 

Figure 9 illustrate the piston lever design problem. The objective of the problem is to locate the piston components, H, B, D, and 

X by minimizing the oil volume when the lever of the piston is lifted up from 0o to 45o as shown in Figure 9. The best obtained 

solutions of the problem by teen optimization algorithms are presented in Table 10 and convergence graph of the objective 

function, 𝑓(𝑥⃗), is plotted in figure 19. The mathematical model of the problem is given as follows: 

Consider [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝐻, 𝐵, 𝐷, 𝑋] 

𝑓(𝑥⃗) =
1

4
𝜋𝑥3

2(𝐿2 − 𝐿1) 

Subject to 

𝑔1(𝑥⃗) = 𝑄𝐿𝑐𝑜𝑠𝜃 − 𝑅𝐹 ≤ 0     𝑎𝑡 𝜃 = 45𝑜, 𝑔2(𝑥⃗) = 𝑄(𝐿 − 𝑥4) − 𝑀𝑚𝑎𝑥 ≤ 0, 𝑔3(𝑥⃗) = 1.2(𝐿2 − 𝐿1) − 𝐿1 ≤ 0, 
𝑔4(𝑥⃗) = 𝐷/2 − 𝐵 ≤ 0. 

Where  

𝑅 =
|𝑥4(𝑥4𝑠𝑖𝑛𝜃 + 𝑥1) + 𝑥1(𝑥2 − 𝑥4𝑐𝑜𝑠𝜃)|

√(𝑥4 − 𝑥2)2 + 𝑥1
2

, 𝐹 =
𝜋𝑃𝐷2

4
, 𝐿1 = √(𝑥4 − 𝑥2)2 + 𝑥1

2,  𝐿2 = √(𝑥4𝑠𝑖𝑛45 + 𝑥1)2 + (𝑥2 − 𝑥4𝑐𝑜𝑠45)2 

Where the lever is L = 240 in, the pay load is P = 10,000 lbs, the maximum allowable bending = moment of the lever is 6 max M 

= 1.8 9 10 lbs in, and the oil pressure is given as 1,500 psi. 

4.10 Problem 10. Welded Beam Design Problem 

Figure 10 illustrated the Welded beam design problem. The objective of welded beam design problem is to minimize the 

fabrication cost by determining the optimal value of four variables namely, length of attached part of bar, 𝑙, thickness of weld, ℎ, 

the height of the bar, 𝑡, and thickness of the bar, 𝑏. The best obtained solutions of the problem by teen optimization algorithms 

are presented in Table 11 and convergence graph of the objective function, 𝑓(𝑥⃗), is plotted in figure 20. The mathematical model 

of the problem is given as follows: 

Consider [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ℎ, 𝑙, 𝑡, 𝑏] 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥⃗) = 1.1047𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) 

Subject to 

𝑔1(𝑥⃗) = 𝜏(𝑥⃗) −  𝜏𝑚𝑎𝑥 ≤ 0, 𝑔2(𝑥⃗) = 𝜎(𝑥⃗) − 𝜎𝑚𝑎𝑥 ≤ 0, 𝑔3(𝑥⃗) = 𝛿(𝑥⃗) − 𝛿𝑚𝑎𝑥  ≤ 0, 𝑔4(𝑥⃗) = 𝑥1 − 𝑥4 ≤ 0, 
𝑔5(𝑥⃗) = 𝑃 − 𝑃𝑐(𝑥⃗) ≤ 0, 𝑔6(𝑥⃗) = 0.125 − 𝑥1 ≤ 0, 𝑔7(𝑥⃗) = 0.10471𝑥1

2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0, 

Variable range 0.1 ≤ 𝑥1, 𝑥4 ≤ 2, 0.1 ≤ 𝑥2, 𝑥3   ≤ 10.  where,  

𝜏(𝑥⃗) = √(
𝑃

√2𝑥1𝑥2

)

2

+ 2
𝑃

√2𝑥1𝑥2

𝑀𝑅

𝐽

𝑥2

2𝑅
+ (

𝑀𝑅

𝐽
)

2

, 𝑀 = 𝑃 (𝐿 +
𝑥2

2
) , 𝑅 = √

𝑥2
2

4
+ (

𝑥1 + 𝑥3

2
)

2

,  

𝑃𝐶(𝑥⃗) =

√𝑥3
2𝑥4

2

36

4.013𝐸

𝐿2 (1 −
𝑥3

2𝐿
√

𝐸

4𝐺
) , 𝐽 = 2 {√2𝑥1𝑥2 [

𝑥2
2

4
+ (

𝑥1 + 𝑥3

2
)

2

]} , 𝜎(𝑥⃗) =
6𝑃𝐿

𝑥4𝑥3
2 , 𝛿(𝑥⃗) =

6𝑃𝐿3

𝐸𝑥3
2𝑥4

, 𝑃 = 6000𝑙𝑏  

𝐿 = 14 𝑖𝑛. , 𝛿𝑚𝑎𝑥 = 0.25𝑖𝑛. , 𝐸 = 30 × 106𝑝𝑠𝑖, 𝜏𝑚𝑎𝑥 = 13600 𝑝𝑠𝑖, 𝜎𝑚𝑎𝑥 = 30000 𝑝𝑠𝑖, 𝐺 = 12 × 106𝑝𝑠𝑖 
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5. Experimental Results  

Engineering design problems are mostly constrained. Two 

classes of constraints are involved in defining the feasible 

solutions during the design process: equality and inequality 

constraints. For optimizing constrained engineering design 

problems, a constraint handling method must be integrated 

to the optimization algorithms. There are several methods of 

constraints handling in the literature: special operators, 

penalty functions, separation of objective functions and 

constraints, hybrid methods and repair algorithms. Since 

finding a good constraints handling method for the selected 

nature inspired optimization algorithms is out of the scope of 

this paper, the simplest method called death penalty is used 

in the experiments. In all experiments in this section, the 

maximum number of iteration is 500 and population size is 

Figure 1. Speed reducer design.  Figure 2.  Tension/compression spring design  Figure 3.  Pressure vessel design 

Figure 4. Tree bar design.  Figure 5.  Gear train design  Figure 6. Cantilever beam design 

Figure 7. One beam design Figure 8.  Tubular Column Design  Figure 9.  Piston Lever Design 

Figure 10. Welded beam design 
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taken. Since the main objective of solving an engineering design problem is to achieve the global optimum with the least possible 

computational cost, this section only presents the best obtained solution stored in the tables. In order to conduct the experiments, 

each algorithm 10 times independently runs carried out to find the optimal solution. Other specific control parameters of the 

algorithms are presented as follows: 

ABC: Limit = (population size × problem dimension)/2.  

ACO: Sample size =40, Intensification Factor =0.5 and Deviation-Distance Ratio =1. 

BBO: Emigration Rates are the same as original form of the algorithm, Habitat Keep Rate =0.4, Habitat Keep Size = round (Habitat 

Keep Rate× Population size), alpha =0.9 and mutation rate is 0.15.  

CMA-ES: Lambda= (4+round (3×log(problem dimension))) ×5, mu =lambda/2, and alpha_mu =2. 

CS: Discovery rate of alien eggs =0.25 and beta =3/2. 

DE: Crossover rate =0.5. 

GA: Uniform Crossover, Mutation rate =0.4, pc =beta =1 and sigma =1.6 

GSA: ElitistCheck=1, Rpower=1, alpha=20, G0=100 and Final Percentage =2.  

GWO: 𝑎 =2, Coefficient Vector 𝐴 =2×a× 𝑟𝑎𝑛𝑑(0,1) − 𝑎 and 𝐴 =2× 𝑟𝑎𝑛𝑑(0,1) 

PSO: Inertia weight =1, Dumping ratio of the inertia =0.99 and Acceleration Coefficients =2.  

 

Table 2.  The optimum table of speed reducer design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 3.46903 3.5 3.5061 3.60000 3.50000 3.5 3.50614 3.5 3.50383 3.58 

𝑥2 0.738422 0.7 0.70095 0.70000 0.70000 0.7 0.7 0.7 0.70001 0.7 

𝑥3 22.1127 17 17.3288 17.02269 17.0000 17 17 19.2815 17.00109 17 

𝑥4 7.73173 7.3 7.90396 7.66286 7.30015 7.3 7.3 7.75102 7.66704 7.9 

𝑥5 7.90261 7.7153 7.96752 8.22044 7.71567 7.7153 7.72769 7.88221 8.07049 8.20653 

𝑥6 3.67473 3.3505 3.47351 3.48091 3.35057 3.3505 3.35698 3.34987 3.36105 3.3517 

𝑥7 5.38887 5.2867 5.30899 5.44752 5.28670 5.2867 5.29133 5.28644 5.28903 5.35081 

𝑓(𝑥⃗) 2994.425 2994.425 3119.142 3197.373 2994.454 2994.425 3001.72 3436.664 3011.428 3084.798 

 

Table 3.  The optimum table of tension/compression spring design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 0.19154 0.05787 0.063632 0.057280 0.05167 0.05173 0.0715 0.05344 0.05303 0.05311 

𝑥2 0.91193 0.53449 0.726039 0.473600 0.35643 0.3574 0.97562 0.39654 0.39452 0.40773 

𝑥3 10.64974 6.10533 8.905250 12.29424 11.31581 11.25386 2.05605 10.23385 10.43686 11.67213 

𝑓(𝑥⃗) 0.013431 0.013617 0.031074 0.022630 0.012669 0.012666 0.019314 0.01350 0.012892 0.013425 

 

Table 4.  The optimum table of the pressure vessel design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 53.41444 17.53227 31.9342 15.08084 12.96178 13.02424 16.1962 16.14815 13.07634 16.92374 

𝑥2 43.32319 8.93109 20.7027 8.3705 7.19033 6.96844 8.07215 12.13964 6.93799 8.36021 

𝑥3 59.82609 56.60267 56.6552 47.1189 42.39246 42.0984 52.3517 50.14964 42.41433 53.53823 

𝑥4 118.5264 60.88875 57.9356 136.5882 173.5198 176.6366 86.10287 98.29682 173.1477 86.7682 

𝑓(𝑥⃗) 6742.043 6814.896 16651.33 6932.2 6070.141 6059.714 6531.356 7671.275 6064.998 6735.203 
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Table 5.  The optimum table of the three bar truss design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 0.83105 0.78868 0.793722 0.79276 0.7887 0.7887 0.811 0.77102 0.78844 0.80979 

𝑥2 0.43663 0.40822 0.42455 0.39977 0.40821 0.4082 0.35268 0.4636 0.40899 0.36747 

𝑓(𝑥⃗) 264.2724 263.8962 266.9535 264.204 263.8958 263.8958 264.6586 264.4393 263.9034 265.7909 

 

Table 6.  The optimum table of the gear train design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 45.50281 44.97903 52.7511 54.86008 49.14665 53.99039 52.018 47.69817 46.24571 47.88687 

𝑥2 24.01581 18.83844 20.7243 24.57884 16.39411 19.9608 18.72379 19.21913 18.85618 21.38847 

𝑥3 18.36112 16.92246 17.4072 22.23511 19.42264 22.36668 20.1361 17.85425 16.3491 21.06099 

𝑥4 47.28579 47.35928 46.4695 54.01053 41.79137 53.2693 46.82071 48.98712 46.58534 52.80312 

𝑓(𝑥⃗) 2.3E-11 1.96E-11 4.08E-17 2.38E-07 3.27E-15 1.07E-20 7.23E-13 2.48E-27 6.18E-12 7.6E-30 

 

Table 7.  The optimum table of the cantilever beam design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 34.96363 6.01636 5.91823 6.01885 6.03426 6.01674 6.01712 6.17858 6.018 6.02401 

𝑥2 31.17536 5.30695 5.2822 5.30526 5.30905 5.30859 5.33971 5.26544 5.30569 5.30195 

𝑥3 22.11757 4.49385 4.44764 4.49214 4.47877 4.49481 4.50328 4.37435 4.49906 4.49522 

𝑥4 28.57672 3.50303 4.7632 3.49830 3.50031 3.50124 3.46815 4.4468 3.50025 3.50038 

𝑥5 24.21287 2.15364 3.34591 2.16086 2.15321 2.15228 2.18155 2.29922 2.15225 2.153 

𝑓(𝑥⃗) 1.40472 1.34 1.48245 1.34006 1.34008 1.34 1.34221 1.40801 1.34006 1.34002 

 

Table 8.  The optimum table of the one beam vertical deflection design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 56.24547 80 77.94950 79.66980 79.99999 80 80 52.93364 80 80 

𝑥2 36.79195 50 39.78700 43.74490 49.99498 50 44.10551 33.96276 49.99662 50 

𝑥3 1.96862 0.9 1.123057 0.900000 5.80986 0.9 0.90001 0.90198 5.81 0.9 

𝑥4 2.60887 2.34137 2.836650 2.805180 2.32201 2.3218 2.71691 3.82224 2.32181 2.3218 

𝑓(𝑥⃗) 0.015098 0.01308 2.059639 0.116947 0.013074 0.013074 0.013196 58.78099 0.013075 0.013074 

 

Table 9.  The optimum table of the tubular column design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 5.75393 5.4522 5.39201 5.60713 5.4522 5.4522 5.47185 5.462 5.45276 5.4522 

𝑥2 0.36262 0.2916 0.328956 0.28538 0.2916 0.2916 0.29842 0.2913 0.29165 0.2916 

𝑓(𝑥⃗) 26.63162 26.4864 27.8482 26.81243 26.4864 26.4864 26.91682 26.51721 26.49097 26.4864 
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Table 10.  The optimum table of the piston lever design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 183.9049 0.05 174.625 150.035 0.05 0.05 209.5217 225.993 149.8804 300.02 

𝑥2 287.1188 2.0415 249.4162 159.493 2.04165 1.04575 413.5279 282.8183 151.424 300.8166 

𝑥3 29.86139 4.083 4.42546 3.90891 4.08313 4.10015 2.92495 11.93954 3.52209 2.95986 

𝑥4 91.60922 120 64.8717 98.7006 119.9994 120 68.15038 73.55425 102.0025 84 

cost 8.43801 8.4127 520.4436 165.7549 8.4137 104.9726 284.3971 11456.59 56.23043 103.8487 

 

 

Table 11.  The optimum table of welded beam design problem. 

V
a
lu

e
s 

Meta-Heuristic Optimization Algorithms 

ABC ACO BBO CMA-ES CS DE GA GSA GWO PSO 

𝑥1 0.70030 0.31749 0.504049 0.24914 0.205 0.2057 0.50505 0.53483 0.20517 0.20627 

𝑥2 5.06083 5.17563 3.80350 7.23077 7.11726 7.0924 3.92521 3.87374 7.1101 6.95803 

𝑥3 5.18349 7.33520 6.07009 8.49776 9.06279 9.0366 5.82759 5.27035 9.05081 9.31923 

𝑥4 0.81911 0.31749 0.605837 0.28008 0.20594 0.2057 0.53369 0.61507 0.20583 0.21077 

Cost 3.00981 2.68963 3.88370 2.84074 2.22647 2.2182 3.58493 3.94203 2.22264 2.28834 
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6. Findings  

This work presents a comparative study of teen well-known metaheuristic algorithm’s performance on teen engineering design 

problems. Regarding the speed reducer design problem, DE, ACO and ABC provided the best solution, but GSA provided the worst. 

Regarding the tension/compression spring design problem, all the algorithms are very competitive in the sense of solution quality. 

Regarding the pressure vessel design problem, DE provided the best solution, CS provided a very competitive answer, and GSA 

provided the worst answer. On the three-bar truss design problem, DE and CS provided the same better answer, while the rest of 

the algorithms provided very close answers to the best answer. PSO provided the best answer to the gear train design problem, 

while, on the cantilever beam design problem, DE and ACO provided the best solution. DE also provided the best solution on the 

one beam vertical deflection design problem, welded beam design problem and tubular column design problem. Finally, ACO 

provided the best solution on the welded beam design problem. Overall comparison between the performances of the algorithms 
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demonstrated that all the algorithms provide a competitive answer. The ranking of the algorithms in terms of providing the best 

solution for each problem is presented in table 12 in below. 

Table 12.  The ranking table of algorithms in solving engineering design problems 

R
a
n

k
in

g
 

Engineering Design Problems 

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Prob 9 Prob 10 

1 ABC DE DE DE PSO ACO PSO DE ACO DE 

2 ACO CS GWO CS GSA DE DE PSO CS GWO 

3 DE GWO CS ACO DE PSO CS CS ABC CS 

4 CS PSO GA GWO BBO CMAES GWO ACO GWO PSO 

5 GA ABC PSO CMAES CS GWO ACO GWO PSO ACO 

6 GWO GSA ABC ABC GA CS GA GSA DE CMAES 

7 PSO ACO ACO GSA GWO GA ABC ABC CMAES ABC 

8 BBO GA CMAES GA ACO ABC CMAES CMAES GA GA 

9 CMAES CMAES GSA PSO ABC GSA BBO GA BBO BBO 

10 GSA BBO BBO BBO CMAES BBO GSA BBO GSA GSA 

 

7. Conclusion  

This work presents a comparative study on the performance of the well-known metaheuristic optimization algorithms: ABC, ACO, 

BBO, CS, CMAES, DE, GA, GSA, GWO and PSO in solving the teen real structural design problem. The teen problems are, namely, 

speed reducer design, tension/compression spring design, pressure vessel design, Three-bar truss design, gear train 

design, cantilever beam design, I-beam vertical deflection design, tubular column design, piston lever design and welded beam 

design. Although the best solutions for all the problems are provided by ABC, DE, ACO, PSO and CS, other algorithms have also 

shown a competitive answer. The algorithms, namely, BBO, GSA and CMAES provided all the worst solutions. The study 

demonstrates that the DE is much better than the other algorithms in terms of solution quality. Parameter settings also have effects 

in performance of the algorithms, of course for different parameter settings one probably finds different results. Finally, from the 

comparative study of algorithms, it can be concluded that in solving engineering design problems, it will be important to choose 

a suitable metaheuristic algorithm in order to achieve the best possible answer. 
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