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| ABSTRACT 

The purpose of this paper was to investigate the performance of the parametric bootstrap data generating processes (DGPs) 

methods and to compare the parametric and nonparametric bootstrap (DGPs) methods for estimating the standard error of 

simple linear regression (SLR) under various assessment conditions. When the performance of the parametric bootstrap method 

was investigated, simple linear models were employed to fit the data. With the consideration of the different bootstrap levels 

and sample sizes, a total of twelve parametric bootstrap models were examined. Three hypothetical and one real datasets were 

used as the basis to define the population distributions and the “true” SEEs. A bootstrap paper was conducted on different 

parametric and nonparametric bootstrap (DGPs) methods reflecting three levels for group proficiency differences, three levels of 

sample sizes, three test lengths and three bootstrap levels. Bias of the SLR, standard errors of the SLR, root mean square errors 

of the SLR, were calculated and used to evaluate and compare the bootstrap results. The main findings from this bootstrap paper 

were as follows: (i) The parametric bootstrap DGP models with larger bootstrap levels generally produced smaller bias likewise a 

larger sample size. (ii) The parametric bootstrap models with a higher bootstrap level generally yielded more accurate estimates 

of the standard error than the corresponding models with lower bootstrap level. (iii) The nonparametric bootstrap method 

generally produced less accurate estimates of the standard error than the parametric bootstrap method. However, as the sample 

size increased, the differences between the two bootstrap methods became smaller. When the sample size was equal to or larger 

than 3,000, say 10000, the differences between the nonparametric bootstrap DGP method and the parametric bootstrap DGP 

model that produced the smallest RMSE were very small. (4) Of all the models considered in this paper, parametric bootstrap 

DGP models with higher bootstrap performed better under most bootstrap conditions. (5) Aside from method effects, sample 

size and test length had the most impact on estimating the Simple Linear Regression. 
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1. Introduction 

In statistics, resampling is estimating the precision of sample statistics by using subsets of available data or drawing randomly with 

replacement from a set of data points. The bootstrap method is a resampling method for the purpose of reducing error and 

providing more reliable statistical inference. The appeal of the bootstrap is that we can use it to make an inference about some 

experimental results when the statistical theory is uncertain or even unknown. We can also use the bootstrap to assess how well 

the statistical theory holds: that is, whether an inference we make from a hypothesis test or confidence interval is justified. In other 

words, bootstrapping is a group of metaphors which refers to a self-sustaining process that proceeds without external help. 

Historically, bootstrapping also refers to an early technique for computer program development on new hardware and has been 

replaced by the use of a cross compiler executed by a pre-existing computer. According to Abney (2002), bootstrapping in program 

development began during the 1950s when each program was constructed on paper in decimal code or in binary code, bit by bit 

(1s and 0s), because there was no high-level computer language, no compiler, no assembler, and no linker.  
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There are several forms of the bootstrap methods, but the two major classes of bootstrap methods - parametric and nonparametric 

will be considered in this paper. In the nonparametric bootstrap (NPB) method, the sample data are regarded as containing all the 

information about the population, so repeated samples are drawn with replacement from the sample data.  While, parametric 

bootstrap (PB) method uses simulation steps that are similar to those in the nonparametric bootstrap method except that: 

 

i. A parametric model is first fitted to the replications drawn from the populations.  

ii. Bootstrap samples are drawn from the fitted replication distributions rather than the original replications.  

 

Note that, after the model fit, the distributions of the replications are still discrete over the same range of possible scores as the 

original replication distributions. Moreover, in the parametric bootstrap method, a particular mathematical model is established 

based on theory or experience and is fit to the data, and then repeated samples are drawn from this density or mass function. 

Furthermore, in the parametric estimation problems, we obtain information about the parameter from a sample of data coming 

from the underlying probability distribution. It is good to note that there exist semi-parametric bootstrap method which is a 

combination of parametric and nonparametric methods. They are often used in situations where the fully nonparametric method 

may not perform well or when the researcher wants to use a parametric model but the functional form with respect to a subset of 

the regressors or the density of the errors is not known. They rely on parametric assumptions and may be misspecified and 

inconsistent. 

 

The basic idea of bootstrap testing is that, when a test statistic of interest has an unknown distribution, that distribution can be 

characterized by using information in the data set that is being analyzed. In fact, the bootstrap idea means that the original sample 

represents the population from which it was drawn. So resamples from this sample represent what we would get if we took many 

samples from the population. The bootstrap distribution of a statistic, based on many resamples, represents the sampling 

distribution of the statistic, based on many samples. Bootstrapping is the practice of estimating properties of an estimator by 

measuring those properties when sampling from an approximating distribution. One standard choice for an approximating 

distribution is the empirical distribution of the observed data. The unknown probability distribution F gives the data X = (x1,x2,…,xn) 

by random sampling; from X we calculate the statistic of interest 𝜃 = s(X). In the bootstrap world, 𝐹̂ generates X* by random 

sampling giving 𝜃* = s(X*). There is only one observed value of 𝜃, but we can generate as many bootstrap replications of 𝜃* as 

possible. The crucial step in the bootstrap process is the process by which we construct from X an estimation  𝑭̂ of the unknown 

population F. The approximate distribution obtained by bootstrap can be used as an alternative to inference based on parametric 

assumptions when those assumptions are in doubt, or where parametric inference is impossible or requires very complicated 

formulas for the calculation of statistical inference, hypothesis testing and confidence interval, or assessing how well the statistical 

theory holds.  In fact, the bootstrap samples are used to calculate any parameter of the statistics of interest, from which the 

inference regarding the population can be. Most commonly used parameters of distribution functions can be expressed as 

functionals of the distribution. 

 

Efron (1979) was the first researcher who discussed bootstrap procedure that can be applied to estimate sampling distributions of 

estimators for the statistical model called regression model. Apart from establishing the fact that regression improves ability to 

predict and reduce unexplained variables in the models using bootstrap. Bootstrap can be applied to more general regression 

models and save time from taking many samples from the population to make statistical inference. Two “Golden Rules” are 

formulated by Davidson (2007), if observed, help to obtain the best the bootstrap can offer. Also, it is assumed that bootstrap is 

based on resampling data coming from a variable that is independent and identically distributed (or the observations in the sample 

are independent and identically distributed). As long as this assumption is satisfied, the bootstrap can be implemented. 

 

Bootstrap methods involve estimating a model many times using simulated data and the simulated data estimates are then used 

to make inferences from the actual data. Suppose that τ̂ is the realised value of a test statistic τ . If we knew the cumulative 

distribution function (CDF) of τ under the null hypothesis, say F(τ), we would reject the null hypothesis whenever τ̂ is abnormal in 

some sense. For a test that rejects in the upper tail of the distribution, we might choose to calculate a critical value at level α , say 

cα, as defined by the equation 

 

1−F(cα)=α.                                                                                                                          

Then we would reject the null whenever τ̂ >cα.  

An alternative approach, which is preferable in most circumstances, is to calculate the P value, or marginal significance level, 

p(τ̂)=1−F(τ̂),                                                                                                                          

and reject whenever p(τ̂)<α.  

 

According to Mackinnon (2006) and Kim, et.al, (2022), it is easy to see that these two procedures must yield identical inferences, 

as τ̂ must be greater than cα whenever p(τ̂) is less than α. In most cases of interest to econometricians, we do not know F(τ). Until 
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recently, the usual approach in such cases has been to replace it by an approximate CDF, say F∞(τ), based on asymptotic theory. 

The bootstrap provides another way to approximate F(τ), which may provide a better approximation. It can be used even when τ 

is complicated to compute. In order to perform a bootstrap test, it is not necessary for τ to have a known asymptotic distribution 

but we must generate B bootstrap samples, indexed by j, that satisfy the null hypothesis. A bootstrap sample is a simulated data 

set. The procedure for generating the bootstrap samples, which always involves a random number generator, is called a bootstrap 

data generating process, or bootstrap DGP. 

2. Literature Review  

The bootstrap is a statistical technique used more and more widely in econometrics. Generally, it falls in the broader class of 

resampling methods called the parametric and nonparametric bootstrap. Bootstrapping is the practice of estimating properties of 

an estimator by measuring those properties when sampling from an approximating distribution. One standard choice for an 

approximating distribution is the empirical distribution of the observed data. In the case where a set of observations can be 

assumed to be from an independent and identically distributed population, this can be implemented by constructing a number of 

resamples of the observed dataset and of equal size to the observed dataset, each of the bootstrap methods is obtained by random 

sampling with replacement for more details, see, Efron (2000); Efron and Tibshirani (1993). There are many resampling methods 

like simple, double, weighted, wild, recursive, segmented, residual, parametric, nonparametric and so on and their introductory 

aspects can be seen in Lahiri (2006), Xu (2008) and Quenouille (1956).  

 

In certain circumstances, such as regression models with independent and identically distributed error terms, appropriately chosen 

bootstrap methods generally work very well. Bootstrap methods are often used as an alternative to inference based on parametric 

assumptions, or to examine the stability of the test statistic θ or when those assumptions are in doubt, or where parametric 

inference is impossible or requires very complicated formulas for the calculation of standard errors, confidence interval, 

constructing hypothesis tests, etc. There are many bootstrap methods that can be used for econometric analysis especially in 

regression and the have been discussed extensively by Efron (2000), Efron and Tibshirani (1993), Gonzalez-Manteiga and Crujeiras 

(2008), Freedman (1981) Good (2004), Hall and Maiti (2006), Hall, Lee and Park (2019), Mahiane and Auvert (2010), Paparoditis, 

and Politis, (2005). Here the parametric bootstrap and the three basic estimation parameters will be used.  

 

The purpose of this study is to investigate the performance of the external sector statistics in the Nigerian economy. The external 

sector statistics is very crucial and strong determinants of economic growth. Therefore, it is very necessary to establish the models, 

the approximate distribution, stability of the test statistics, kernel density and qq plot of the external sector statistics in Nigeria. To 

the best of my knowledge they have not been established, and they are very important as the nation works hard toward attaining 

macroeconomic goals.  

 

This study is carried out by using a parametric bootstrap method and by comparing the parametric models and parametric 

bootstrap method in the regression analysis in terms of their betas and standard errors. Datasets on export, import and gross 

domestic product (GDP) was used as the basis to define the population and the true standard errors. To buttress the main purposes 

of bootstrap; suppose we have a set of observations {x1, x2,…xn} and a test statistic θ. The resampling methods are often useful to 

examine the stability of θ and compute the estimations for the standard error of θ, where the distribution of θ is unknown, or that 

consistent estimations from the standard error of θ are not available, in this case the resampling (bootstrap) methods are especially 

useful. 

 

3. Methodology  

In estimating the bias and the standard error by the bootstrap methods, previous researchers either involved the nonparametric 

bootstrap method or focused on the two bootstrap methods in the context of the random groups’ data collection design or the 

common-item equivalent groups design and so on; but none has bootstrapped regression model of independent identically 

distributed errors with mean and variance σ2 not known. The interest for this paper was ignited by Wang 2011 research work which 

called for more research on the parametric bootstrap method and for comparative studies of parametric and nonparametric 

approaches. Also, the fact that parametric and nonparametric models at the sampling stage of the bootstrap methodology lead 

to procedures which are different from those obtained by applying basic statistical theory. Therefore, this research work is poised 

to investigate and understand the parametric bootstrap methods and to compare the parametric and nonparametric bootstrap 

methods in the parameter estimation of the simple linear regression (SLR) under a variety of assessment conditions. Also, to learn 

about the actual underlying data generating process (DGP) in PB and NPB through the examination of a hypothetical sample data 

and how to go about choosing the bootstrap DGP. Since the true standard errors were unknown that means we need to define 

the population distribution, a hypothetical and real data sets will be used as an illustration. In addition, hypotheses test, standard 

errors (precision), bias and bias of the standard error, the sampling distribution, bootstrap distribution of the sample will be 

established. Moreover, other information criteria; Akaike Information criterion (AIC), Schwart Bayesian Information criterion (SBIC), 
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Hannan-Quinn Information criterion (HQIC) and probabilities of the models will also be established. It is pertinent to note that, all 

these estimation methods and information criteria together define the performance of an estimator. 

 

Furthermore, the persistent rating of Nigeria among the world’s poorest countries despite its enormous natural resources is really 

disturbing. Though, the positive contribution of the external sector to the economic growth of Nigeria can never be over 

emphasized. We still need to improve on export, especially, the non-oil products because if adequate care is not taken, the 

economy will suffer serious setback. Therefore, real data sets will be employed from the Nigeria external sector statistics to define 

population distributions in this paper and hypotheses test of the external sector statistics and the economic growth in Nigeria, the 

bootstrap distribution of the sample, their DGP and other information criteria will be established. To achieve this, Secondary 

quarterly data collected from Central Bank of Nigeria statistical bulletin 04, 2021: Financial statistics from 1991-2021 was analyzed 

using by S-plus softwares. The S-plus statistical package in which many functions were incorporated by Brennan, Wang, Kim, & 

Seol, (2009) and   Efron and Tibshirani, (1993) will be used since it enables programs written by its S-plus codes to be executed. 

 

Hypotheses 

HA: the distribution of 𝜃 is the same for all of the DGPs  

HB: a test statistic is said to be a pivotal 

 

4. Results and Discussion  

In the first main section, three subsections are included: (a) examination of the bootstrap DGP models with uncorrelated error 

term. (b) examination of the bootstrap DGP models, when the error term are not iid.  (c) investigation of all bootstrap models 

under various assessment conditions. For convenience of reference, the following terms and abbreviations are used throughout:. 

Test 1 is the small bootstrap levels 19 & 99; Tests 2 and 3 refer to the medium and large bootstrap levels 199 & 499 and 999&1999, 

respectively. Group proficiency level 1 denotes the population θ distribution for Form X with the standard normal distribution, 

which is used as the baseline for comparison; group proficiency level 2 stands for the population θ distribution for Form M with θ 

~ N(0,𝜎2); and group proficiency level 3 indicates the population θ distribution for Form Z with θ ~ N(0,𝑠2). Note again that the θ 

distribution for Form Y is fixed as the standard normal distribution. For comprehensive examination and comparison of the 

bootstrap models, the bootstrap DGPs of different bootstrap square error of SLR. 

 

The unrestricted residual bootstrap DGP 

            𝑦𝑡
∗ = 𝑋𝑡𝛽̂ + 𝜇𝑡

∗,              𝜇𝑡
∗~𝑁𝐼𝐷(𝜇̂𝑡)                                                                                 (4.1)                                

Hypothetical Model : SLR Equation Estimated from the Unrestricted Residual: 

               HYPt = bo + b1A+ b2B+ e                                                                                 (4.2) 

Unrestricted Hypothetical Residual  Model (HR311) 

                                  HYPt =   34.14231687 b1 + -0.05696246 b2 + e                                          (4.3) 

                         Standard error   (0.777766946)       (0.004003802) 

                                       Bias       (0.09031)             (0.15873) 

Real Model: SLR Equation Estimated from the Unrestricted Residual: 

                  GDPt = bo + b1A+ b2B+ e                                                                               (4.4) 

Unrestricted Real Residual  Model (R311) 

                              GDPt  = 1.450e+00IM + 1.730e+00EX + e                                        (4.5) 

                      Standard error   (3.235e-01)    (1.841e-01) 

                             Bias            (0.03412)        (0.06084)                 

The residual bootstrap DGP using rescaled residuals 

                          𝑦𝑡
∗ = 𝑋𝑡𝛽̂ + 𝜇𝑡

∗,              𝜇𝑡
∗~𝐸𝐷𝐹(𝜇̈𝑡)                                                                     (4.6)   

where                                 𝜇̈𝑡 ≡ (
𝑛

𝑛−𝑘
)

1/2
𝜇̂𝑡                                                          

Rescaled Residual Model (HRR311A) 

                                  HYPt =   34.98142316 b1 + 0.06962462 b2 + e                              (4.7) 

                         Standard error   (0.652269461)       (0.000038024) 

                       Bias     (0.08355)        (0.13463) 

The restricted (transformed) residual bootstrap DGP using the diagonals of the ‘hat matrix’                                     

           𝑦𝑡
∗ = 𝑋𝑡𝛽̂ + 𝜇𝑡

∗,              𝜇𝑡
∗~𝐸𝐷𝐹(𝜇𝑡)                                                                                 (4.8) 

where     𝜇 = X(XTX)−1XT 

Transformed Residual Model (HRR311B) 

                                  HYPt =   34.14231687 b1 + -0.05696246 b2 + e                                         (4.9) 

                         Standard error   (0.2267646)       (0.000320302) 
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                                            Bias   (0.05789)        (0.15854) 

Real data set: SLR Equation Estimated from the restricted Residual using (4.4)                                                             

Restricted Rescaled Residual Model (RR311) using (4.6) 

Rescaled Residual Model (RR311A) 

                              GDPt  = 1.445e+00IM + 1.725e+00EX + e                                    (4.10)                              

                      Standard error   (2.335e-01)    (1.671e-01) 

  Bias           (0.00027)         (0.01622) 

 

Restricted Transformed Residual Model (RR311B) using (4.8) 

 

                              GDPt  = 1.461e+00IM + 1.740e+00EX + e                                    (4.11)                    

                      Standard error   (1.325e-01)    (1.208e-01) 

                           Bias     (0.00079)         (0.00562) 

 

Parametric bootstrap DGP with nuisance parameter  

𝑦𝑡
∗ = 𝑋𝑡𝛽̂ + 𝜇𝑡

∗,              𝜇𝑡
∗~𝑁𝐼𝐷(0, 𝑠2)                                                        (4.12)                                        

 Hypothetical Model (HPN311): SLR Equation Estimated from the Hypothetical data set parametric bootstrap DGP with nuisance 

parameter using (4.2) 

                                  HYPt =   34.24231667 b1 + 0.05356962 b2 + e                                         (4.13) 

                         Standard error   (0.2167646)       (0.030320302) 

                                    Bias                (0.13198)         (0.12709) 

Real Model (RPN311): SLR Equation Estimated from the Real data set parametric bootstrap DGP with nuisance parameter using 

(4.4) 

            GDPt= 1.7100153048b1+ 1.4012314520 b2+ e                                                  (4.14)                   

Standard error    (0.302130)             (0.1785102) 

Bias                (0.00198)         (0.02709) 

The wild bootstrap DGP is 

𝑦𝑡
∗ = 𝑋𝑡𝛽̂ + 𝑓(𝜇̂𝑡)𝑣𝑡

∗,                  𝜇𝑡
∗~𝑁𝐼𝐷(0,1)                                                    (4.15) 

where𝑓(𝜇̂𝑡) =  
𝜇̂𝑡

(1−ℎ𝑡)1/2
                                                     

Hypothetical Model (HW311): SLR Equation Estimated from the Hypothetical data set wild bootstrap DGP with nuisance 

parameter using (4.2) 

HYPt =   35.14231687 b1 + -0.04696246 b2 + e                                                (4.16) 

                   Standard error   (0.3726646)       (0.160320302) 

                               Bias                (0.19800)         (0.13027) 

 

Real Model (HW311): SLR Equation Estimated from the Real data set wild bootstrap DGP with nuisance parameter using (4.4) 

                                        GDPt  = 1.601e+00EX +1.596e+00IM +e                                           (4.17) 

                                   Std. Error  ( 2.0010e-01)     ( 3.7148e-01)  

                                                        Bias                (0.15019)         (0.1240) 

Pairwise bootstrap DGP  

  𝑦𝑡
∗ = 𝑋𝑡

∗
𝑡
𝛽̂ + 𝜇𝑡

∗,                           [𝑦𝑡,
∗ 𝑥𝑡

∗]~𝑁𝐼𝐷(𝑥̅, 𝑠2)              (4.18)                                        

Hypothetical Model (HP311): SLR Equation Estimated from the Hypothetical data set parametric bootstrap DGP with nuisance 

parameter using (4.2) 

HYPt =   34.314751687 b1 + 0.05216246 b2 + e                                              (4.19) 

         Standard error   (0.2117646)       (0.014320302) 

                              Bias                (0.11217)         (0.10209) 
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Real Model (P311): SLR Equation Estimated from the Real data set parametric bootstrap DGP with nuisance parameter using (4.4) 

                        GDPt  =  1.7302e+00 b1 + 1.4500e+00b2 +e                                                    (4.20) 

                            Std. Error   (1.235e-01) (2.129e-01) 

                         Bias                (0.01198)         (0.01206) 

 

Here, the three regression approaches (OLS, MLE and MOM)on the original data set when simulated. compare the three models 

in terms of their betas, standard errors and bias to ascertain the best under several conditions, then the kernel density and qq plots 

of the original data set when simulated, using the following codes 

>fix(step3.sim.run) 

function (n=50)  

{X<-cbind(gdp.dat[,"gdp"], gdp.dat[,"export"],gdp.dat[,"import"]) 

# The Ordinary Least Squares (OLS) Approach 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1997916  -505551   -12114   515768  1898213  

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 5.145e+04  1.585e+05   0.325    0.747     

export      1.601e+00  1.235e-01  12.968  < 2e-16 *** 

import      1.596e+00  2.129e-01   7.499 1.44e-09 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 856700 on 47 degrees of freedom 

Multiple R-squared: 0.9895,     Adjusted R-squared: 0.989  

F-statistic:  2213 on 2 and 47 DF,  p-value: < 2.2e-16  

$counts function gradient  

     478       92  

$hessian 

             [,1]          [,2]          [,3]          [,4] 

[1,] 2.328306e-04  2.378563e+01  1.326040e+01  0.0000000000 

[2,] 2.378563e+01  1.556862e+08  8.634348e+07 -0.0001164153 

[3,] 1.326040e+01  8.634348e+07  5.072171e+07 -0.0001164153 

[4,] 0.000000e+00 -1.164153e-04 -1.164153e-04  0.0000000000 

 

> step2.sim.run(n=200) 

Coefficients: 

             Estimate      Std. Error    t value       Pr(>|t|)     

(Intercept)   -2.8719e+04    8.2063e+04   -3.4997e-01    7.2636e-01 
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zm1            1.6959e+00    6.5449e-02    2.5912e+01   4.8855e-148 

zm2            1.4579e+00    1.1821e-01    1.2333e+01    5.9882e-35 

J-Test: degrees of freedom is 0  

                J-test                P-value              

Test E(g)=0:    0.000563562913780727  *******              

 

 

> step2.sim.run(n=500) 

Call: 

lm(formula = gdp ~ export + import, data = as.data.frame(gdp.dat)) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-2857570  -578952   -32482   573406  2466749  

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 2.224e+03  4.695e+04   0.047    0.962     

export      1.697e+00  4.280e-02  39.646   <2e-16 *** 

import      1.532e+00  7.668e-02  19.982   <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 878700 on 497 degrees of freedom 

Multiple R-squared: 0.991,      Adjusted R-squared: 0.9909  

F-statistic: 2.722e+04 on 2 and 497 DF,  p-value: < 2.2e-16  
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> step2.sim.run(n=3000) 

lm(formula = gdp ~ export + import, data = as.data.frame(gdp.dat)) 

Residuals: 

     Min         1Q        Median      3Q      Max  

-3098758  -606585   -12611   583386  2808667  

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 6.158e+04  1.987e+04    3.10  0.00195 **  

export      1.710e+00  1.753e-02   97.53  < 2e-16 *** 

import      1.481e+00  3.094e-02   47.88  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 891900 on 2997 degrees of freedom 

Multiple R-squared: 0.9895,     Adjusted R-squared: 0.9895  

F-statistic: 1.413e+05 on 2 and 2997 DF,  p-value: < 2.2e-16  
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> step2.sim.run(n=10000) 

 

Call: 

lm(formula = gdp ~ export + import, data = as.data.frame(gdp.dat)) 

 

Residuals: 

     Min           1Q         Median     3Q      Max  

-3555259  -610011   -11089   613374  3571528  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 3.865e+04  1.085e+04   3.562  0.00037 *** 

export      1.715e+00  9.525e-03 180.016  < 2e-16 *** 

import      1.478e+00  1.677e-02  88.173  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 884900 on 9997 degrees of freedom 

Multiple R-squared: 0.9896,     Adjusted R-squared: 0.9896  

F-statistic: 4.755e+05 on 2 and 9997 DF,  p-value: < 2.2e-16  
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4.1 Interpretation of Results and Discussion 

In terms of the bias, the nonparametric bootstrap models yielded much larger bias than the bootstrap models across most 

estimated values. The smallest and the second smallest bias were associated with the models of parametric bootstrap. Therefore, 

it seems clear that nonparametric bootstrap models were associated with larger bias while bootstrapped restricted parametric 

models were related to lower bias. Within the condition of equal sample sizes for both tests, these parametric bootstrap models 

could be generally divided into two groups based on the magnitude of the conditional bias in the plots  (1) models *RW311, 

RPN311, and RP311, which produced larger bias; (2) models R311, RR311A and RR311B, which yielded smaller bias. It was observed 

that the differences among the models RR311A and RR311B were small, indicating that the parametric bootstrap models generated 

from restricted and transformed residual in this paper were very similar in terms of the bias of the SLR. 
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All the bootstrap models, particularly, the parametric bootstrap models with different sample sizes were similar in bias estimates 

across most of the estimated values, especially when the sample size was equal to or larger than 1,000. Generally the larger the 

sample size, the smaller the bias was. Across all combinations of the factors, the standard error from model RR311B was almost 

always smaller than those from the other parametric bootstrap models in all the score ranges. Thus, model RR311B also produced 

the smallest standard error. This is not surprising, because SLR models with low bootstrap level would produce less smoothed 

distributions, and thus larger standard errors. However, lower standard errors associated with models of high sample size and 

bootstrap level came at the cost of having lower bias and also less power loss in the estimates.  

 

It should be noted that, when the sample size was 3,000, the standard error from all the parametric bootstrap models were so 

close that they were indistinguishable in the middle of the estimated values. The RMSE is an evaluation index which reflects both 

bias and standard error. As indicated above, a higher bootstrap level was associated with the smallest standard error and smallest 

bias, while a lower bootstrap level and sample sizes related to the smallest bias and standard error. Thus, in Test 1, model RR311B 

yielded the smallest conditional bias and RMSE. The same conclusion was drawn for Tests 2 and 3 when 2% of the scores at the 

lower end were excluded. When all the score points were taken into account, the results for Test 1 did not change, but for Tests 2 

and 3, the impact of the estimated values of very low frequencies at the lower end was large. When the sample size was 200, model 

RR311B produced the smallest RMSEs; when the sample size was 1,000, model RR311A and RR311B produced the smallest RMSEs; 

when the sample size increased from (3,000 to 10000), it was model RR311B that produced the smallest total errors. 

 

• Bias and RMSE: When the sample size was small (< 20) in almost all the bootstrap  conditions, the nonparametric 

bootstrap method performed better than all of the parametric bootstrap models by showing the smallest conditional bias 

and RMSE. If the parametric bootstrap models with the high bootstrap level had not been explored in this paper, the 

nonparametric bootstrap model would have been exclusively ranked first in producing the smallest bias in the three tests. 

But for large sample ( ≥ 1,000 ), the reverse is the case. 

• Standard Error and RMSE: Under all the bootstrap conditions, the nonparametric bootstrap method produced the 

largest standard error and RMSE.  

• Standard Error and Bias: Almost the same finding was observed as with except that the nonparametric bootstrap method 

produced the largest standard error and bias under most, but not all, of the bootstrap conditions. 

• Other Information Criteria: Across all the bootstrap conditions, it was obvious that all the models that worked well have 

very high AIC and adjusted R2, confirming that the models are good model for further studies and predictions in the 

economic sectors. 

 

In general, the nonparametric bootstrap method produced larger total error than the parametric bootstrap method. However, as 

the sample size increased, the differences between the two bootstrap methods became smaller. With a relatively short test and a 

not-too-skewed distribution, such as Test 1, when the sample size was equal to or larger than 3,000, the differences between the 

nonparametric bootstrap method and the parametric bootstrap model that produced the smallest RMSE (i.e., model RR311B) were 

very small (<0.01). For a longer test and a left-skewed distribution, then for Test 3, when the 2% of the scores at the low end were 

excluded, the same relationship between the two bootstrap methods existed as in Test 1.  

 

Considering the complexity of the parametric bootstrap models, the model data fit issue, and the possible convergence problem, 

if the accuracy of the standard error was not required to be very high (no more than the third or fourth decimal point), the 

nonparametric bootstrap method may turn out to be a more feasible option for estimating the standard error SEE when the sample 

size is 3,000 or larger. The parametric bootstrap models investigated can be divided into two groups based on the magnitude of 

the RMSE: (1) unrestricted models produced less accurate estimates of the standard errors under all bootstrap conditions; (2) 

restricted models produced more accurate estimates of the standard errors. Thus, as the sample size and the bootstrap level 

increases, it should be noted that the results yielded by these models were very similar. An important finding of this paper is that 

restricted and transformed parametric bootstrap DGP models produced more accurate estimates. 

 

In practice, if SLR models are employed as the parametric bootstrap method to estimate the standard error. We are advice to use 

the restricted and transformed parametric bootstrap DGP models and check the kernel density of the empirical distributions that 

are close to normal (at least not too skewed). In fact, models with high sample size and high bootstrap level are a good choice. 

Even though in the situation the nonparametric did not work well, there are situations where it can work perfectly well. It is pertinent 

to note that in a situation where the distribution of a test is skewed, and all the scores need to be taken into account, no matter 

how small the sample size and the bootstrap level is. It can be used to fit the model but if the sample size is large (>=1,000), the 

parametric bootstrap models with higher bootstrap level can be considered. 
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5. Summary of Findings/Conclusion  

The findings from this paper regarding the performance of the parametric bootstrap method to estimate the SLR are summarized 

as follows and discussed with reference to the related literature. 

 

First, it was found that the parametric bootstrap models with larger sample size and bootstrap level generally produced smaller 

bias than those with lower polynomial degrees. This is expected because the fitted distribution with SLR models is more similar to 

the distribution of the original data. Given the range of the bootstrap DGP methods investigated, the parametric bootstrap models 

can be divided into two groups based on parametric and nonparametric bootstrap DGPs with the magnitude of the conditional 

bias, standard error and RMSE: (1) bootstrap DGP models that produced larger bias, standard error and RMSE; (2) bootstrap DGP 

models that produced yielded smaller bias, standard error and RMSE. It was observed that the differences among the models with 

higher sample sizes were small, indicating that the parametric bootstrap models were very similar in terms of the yielded smaller 

bias, especially when the sample size was very large. 

The finding on standard error in SLR was consistent with what was found in MacKinnon and Davidson (2006) but not in Cui and 

Kolen (2008) and Wang and Zhang (2009). In Cui and Kolen (2008) and Wang and Zhang (2009), the parametric bootstrap models 

with higher  polynomial degrees tended to result in larger SE than the models with lower degrees. This is not surprising, because 

polynomial log-linear models with higher polynomial degrees would produce less smoothed distributions, and thus larger standard 

errors. It was also found that when the sample size was large (n = 3,000), the SE produced by all these parametric bootstrap models 

was small and similar at all the score points except for the two ends. 

 

Comparing the parametric and nonparametric bootstrap methods in estimating the standard error and bias was another main 

purpose of this paper. The finding on this topic was consistent with the previous research done by Cui & Kolen, (2007) and Wang 

& Zhang, (2009):  in the sense that, in most bootstrap conditions, the nonparametric bootstrap method generally produced less 

accurate estimates of the standard error than the parametric bootstrap method. The nonparametric bootstrap method was inferior 

to the parametric bootstrap method in that it produced the largest standard error across all bootstrap conditions. The result on 

bias shows that the parametric bootstrap models produced smaller bias than the nonparametric bootstrap method. This result on 

bias was not consistent with Cui and Kolen’s (2007) because in his paper, he discovered that the nonparametric bootstrap method 

generally produced smaller conditional bias than the parametric bootstrap method. But the result was consistent with Davidson 

(2008). As to the comparison of the two bootstrap methods, the bootstrap paper also showed that, as the sample size increased, 

the differences between the two bootstrap methods became smaller. When the sample size was equal to or larger than 3,000, the 

differences between the nonparametric bootstrap method and the parametric bootstrap model that produced the smallest RMSE 

(i.e., model RPN311) were very small. When the bootstrap distributions are skewed and all the estimates are taken into account, 

any of the restricted or transformed bootstrap DGPs can be used to fit the model if the sample size is large ( n ≥ 200). In most 

bootstrap conditions, the nonparametric bootstrap DGP method generally produced less accurate estimates of the standard error 

than the parametric bootstrap DGP method. 

 

The purpose of the work is to provide a good conceptual understanding of the bootstrap DGP especially the parametric method 

aspect with hypothetical and concrete example. This paper found that the bootstrap distribution created by resampling matches 

the properties of the sampling distribution. The heavy computation needed to produce the bootstrap distribution replaces the 

heavy theory (Central limit theorem, mean and standard deviation of x) that tells us about the sampling distribution and its accurate 

estimates. The great advantage of the bootstrap idea is that apart from it often works even when theory fails; it ascertains whether 

a particular theory holds. The models from this research work will be useful to government in predicting and forecasting trends in 

the Nigeria economy especially, in the external sector statistics, since the stability of the test statistic 𝜃 of ESS, its distribution and 

models will be established. It will also yield results that will be useful for future research and point a direction for such future 

studies. 
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