
Journal of Mathematics and Statistics Studies  

ISSN: 2709-4200 

DOI: 10.32996/jmss 

Journal Homepage: www.al-kindipublisher.com/index.php/jmss 

   JMSS 
AL-KINDI CENTER FOR RESEARCH 

AND DEVELOPMENT  

 

 

Copyright: © 2024 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

Page | 15 

| RESEARCH ARTICLE 

The Carnot Theorem in Einstein Gyrovector Spaces 

Zafer SANLI1, Dogukan GURKAYNAK2 

1Burdur Mehmet Akif Ersoy University, Assistant Professor Doctor, Department of Mathematics, Burdur, Turkey 
2Burdur Mehmet Akif Ersoy University, Institute of Science, Burdur, Turkey 

 

Corresponding Author: Zafer SANLI, E-mail: sanli@mehmetakif.edu.tr 

 

| ABSTRACT 

In Euclidean geometry, Carnot’s theorem is a direct application of the theorem Pythagoras. In [4,6] A.A. Ungar, employs the 

Einstein gyrovector spaces for the introduction of the gyrotrigonometry. Ungar’s and other researcher’s works play a major role 

in translating some theorems from Euclidean geometry to corresponding theorems in Einstein gyrovector spaces.In [2] Demirel 

and Soytürk proved that hyperbolic Carnot theorem. In this paper, we present Carnot’s theorem in Einstein’s gyrovector spaces 

in terms of gamma factors. 
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1. Introduction  

Hyperbolic geometry appeared in the first half of the 19th century. It is also known as a type of non-Euclidean geometry. Although 

Euclidean Geometry and Hyperbolic Geometry have common concepts such as distanceand angle, both these geometries have 

many  differences. Hyperbolic Geometry has many models, such as: Poincare’ disc model, Einstein’s relativistic velocity model, etc. 

Einstein gyrovector spaces form the algebraic setting for the Beltrami-Klein ball model of Hyperbolic Geometry, just as vector 

spaces form the algebraic setting for the standard model of Euclidean Geometry. 

Let c be the vacuum speed of light, and let 

ℝ𝑐
3 = {𝒗 ∈ ℝ3 ∶ ‖𝒗‖ < 𝑐}                                                                                     (1.1) 

be the c ball of all relativistically admissible velocities of material particles. Einstein’s addition in c-ball is given by the equation. 

𝒖 ⨁ 𝒗  =
1

1+
𝒖⋅𝒗

𝑠2

{𝒖 + 𝒗 +
1

𝑐2

𝛾𝒖

1+𝛾𝒖
(𝒖 × (𝒖 × 𝒗))}                                                                (1.2) 

for all 𝒖, 𝒗 ∈ ℝ𝑐
3, where 𝒖 ⋅ 𝒗 is the inner product that the ball ℝ𝑐

3 inherits from its space ℝ3, 𝒖 × 𝒗is the vector product in  ℝ𝑐
3 ⊂ ℝ3 

and where 𝛾𝒖 is the gamma factor 

𝛾𝒖 =  
1

√1−
‖𝒖‖2

𝑐2

≥ 1                                                                                          (1.3) 

in the c-ball.  
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Owing to the vector identity, 

(𝒙 × 𝒚) × 𝒛 = −(𝒚 ∙ 𝒛)𝒙 + (𝒙 ⋅ 𝒛)𝒚                                                                          (1.4) 

for all   𝒙, 𝒚, 𝒛 ∈ ℝ3, Einstein addition (1.2) can also be written in the form 

𝒖⨁𝒗 =
1

1+
𝒖⋅𝒗

𝑠2

{𝒖 +
1

𝛾𝒖
𝒗 +

1

𝑠2

𝛾𝒖

1+𝛾𝒖

(𝒖 ⋅ 𝒗)𝒗}                                                                     (1.5) 

which remains valid in higher dimensions. Einstein’s addition (1.5) of relativistically admissible velocities was introduced by Einstein 

in 1905.   

In this paper, we study an Einstein gyrovector space thatwas introduced by A. A. Ungar[see 4,5,6]. 

2. Preliminaries  

Definition 2.1. A groupoid (𝔾,⊕) is a gyrogroup if its binary operation satisfies the following axioms. In 𝔾, there is at least one 

element, 0, called left identity, satisfying. 

𝟎⨁𝒂 = 𝒂 

for all 𝒂 ∈ 𝔾. There is an element 𝟎 ∈ 𝔾 for each 𝒂 ∈ 𝔾 there is an element ⊖ 𝒂 ∈ 𝔾, called a left inverse of 𝒂, satisfying  

⊖ 𝒂⨁𝒂 = 𝟎. 

Moreover, for any 𝒂, 𝒃, 𝒄 ∈ 𝔾, there exit a unique element 𝑔𝑦𝑟[𝒂, 𝒃]𝒄 ∈ 𝔾 such that binary operation obeys the left gyroassociative 

law  

𝒂⨁(𝒃⨁𝒄) = (𝒂⨁𝒃)⨁𝑔𝑦𝑟[𝒂, 𝒃]𝒄. 

The map  𝑔𝑦𝑟: 𝔾 → 𝔾  is given by 𝒄 ↦ 𝑔𝑦𝑟[𝒂, 𝒃]𝒄 is an automorphism of the groupoid (𝔾,⊕), that is,  

𝑔𝑦𝑟[𝒂, 𝒃] ∈ 𝑨𝒖𝒕(𝔾,⊕) 

and the automorphism  𝑔𝑦𝑟[𝒂, 𝒃] of automorphism of 𝔾 is called the gyroautomorphism  of𝔾 generated by 𝒂, 𝒃 ∈ 𝔾. Finally, the 

gyroautomorphism  of 𝔾 generated by 𝒂, 𝒃 ∈ 𝔾 possesses the left loop property  

𝑔𝑦𝑟[𝒂, 𝒃] = 𝑔𝑦𝑟[𝒂 ⊕ 𝑏, 𝒃]. 

Additionally, if the binary operation “⊕ " obeys the gyrocommutative law  

𝒂⨁𝒃 = 𝑔𝑦𝑟[𝒂, 𝒃](𝒃⨁𝒂) 

for all 𝒂, 𝒃 ∈ 𝔾, then (𝔾,⊕) is called a gyrocommutative gyrogroup. 

Definition 2.2. Let 𝕍 be a real inner product space and let 𝕍𝑠 be the s-ball of 𝕍, 

𝕍𝑠 = {𝒗 ∈ 𝕍 ∶ ‖𝒗‖ < 𝑠}, 

where  𝑠 > 0 is an arbitrary fixed constant. Einstein addition ⊕ is a binary operation in 𝕍𝑠 given by the equation 

𝒖⨁𝒗 =
1

1 +
𝒖⋅𝒗

𝑠2

{𝒖 +
1

𝛾𝒖
𝒗 +

1

𝑠2

𝛾𝒖

1 + 𝛾𝒖

(𝒖 ⋅ 𝒗)𝒗} 

where 𝛾𝒖 is the gamma factor 

𝛾𝒖 =  
1

√1 −
‖𝒖‖2

𝑠2

≥ 1 

in the s-ball 𝕍𝑠, and where  ∙ and ‖. ‖ are the inner product and norm that the ball 𝕍𝑠 inherits from its space 𝕍. 

Einstein addition satisfies the mutually equivalent gamma identities  

𝛾𝒖⨁𝒗 = 𝛾𝒖𝛾𝒗 (1 +
𝒖 ⋅ 𝒗

𝑠2 ) 
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and 

𝛾⊖𝒖⨁𝒗 = 𝛾𝒖𝛾𝒗 (1 −
𝒖 ⋅ 𝒗

𝑠2 ) 

for all 𝒖, 𝒗 ∈ ℝ𝑠
𝑛.  

When the nonzero vectors 𝒖and 𝒗in the ballℝ𝑠
𝑛of ℝ𝑛are parallel in   ℝ𝑛, 𝒖 ∥ 𝒗, that is, 𝒖 = 𝜆𝒗for some 0 ≠ 𝜆 ∈ ℝ, Einstein addition 

reduces to the Einstein addition of parallel velocities 

 

𝒖⨁𝒗 =
𝒖 + 𝒗

1 +
‖𝒖‖‖𝒗‖

𝑠2

 

Hence,  

‖𝒖‖⨁‖𝒗‖  =
‖𝒖‖ + ‖𝒗‖

1 +
‖𝒖‖‖𝒗‖

𝑠2

 

for all 𝒖, 𝒗 ∈ ℝ𝑠
𝑛. In this case, Einstein’s addition is both commutative and associative. 

 In the Newtonian limit, 𝑠 → ∞, s-ball ℝ𝑠
𝑛 expands to the whole of its space ℝ𝑛, and Einstein’s addition ⨁ in ℝ𝑠

𝑛  reduces 

to vector addition +  in ℝ𝑛. 

Theorem2.3. (ℝ𝑠
𝑛,⊕) Einstein groupoid is a gyrocommutative gyrogroup. 

 Some gyrocommutative gyrogroups admit scalar multiplication, giving rise to gyrovector spaces. 

Definition 2.4. A (𝔾,⊕,⊗) gyrovector space is a gyrocommutative gyrogroup (𝔾,⊕) that obeys the following axioms: 

1. 𝑔𝑦𝑟[𝒖, 𝒗]𝒂 ⋅ 𝑔𝑦𝑟[𝒖, 𝒗]𝒃 = 𝒂 ⋅ 𝒃for all points 𝒂, 𝒃, 𝒖, 𝒗 ∈ 𝔾. 

2. 𝔾 admits a scalar multiplication,  ⊗ , possessing the following properties. For all real numbers  𝑟, 𝑟1, 𝑟2 ∈ ℝ and all points  

and 𝒂 ∈ 𝔾: 

• 1⨂𝒂 = 𝒂 

• (𝑟1 + 𝑟2)⨂𝒂 = (𝑟1⨂𝒂)⨁ (𝑟2⨂𝒂) 

• (𝑟1𝑟2)⨂𝒂 = 𝑟1⨂(𝑟2⨂𝒂) 

• 
|𝑟|⨂𝒂

‖𝑟⨂𝒂‖
=

𝒂

‖𝒂‖
𝒂 ≠ 𝟎   , 𝑟 ≠ 0 

• gyr[𝒖, 𝒗](𝑟⨂𝒂) = 𝑟 ⨂ gyr[𝒖, 𝒗](𝒂) 

• gyr[𝑟1⨂𝒗, 𝑟2⨂𝒗] = 𝐼 

3. Real vector space structure (‖𝔾‖,⊕,⊗) for the set ‖𝔾‖ of one-dimensional “vectors” 

‖𝔾‖ ≔ {∓‖𝒂‖:  𝒂 ∈ 𝔾} ⊂ ℝ 

with vector addition ⊕ and scalar multiplication ⊗, such that for all   𝑟 ∈ ℝ and 𝒂, 𝒃 ∈ 𝔾, 

• ‖𝑟⨂𝒂‖ = |𝑟|⨂‖𝒂‖ 

• ‖𝒂⨁𝒃‖ ≤ ‖𝒂‖⨁‖𝒃‖ 

Theorem 2.5. An Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is an Einstein gyrocommutative gyrogroup (ℝ𝑠
𝑛, ⨁) with scalar 

multiplication ⨂ given by 

𝑟⨂𝒗 = 𝑠
(1 +

‖𝒗‖

𝑠
)

𝑟
− (1 −

‖𝒗‖

𝑠
)

𝑟

(1 +
‖𝒗‖

𝑠
)

𝑟
+ (1 −

‖𝒗‖

𝑠
)

𝑟

𝑣

‖𝒗‖
= 𝑠𝑡𝑎𝑛ℎ(𝑟𝑡𝑎𝑛ℎ−1

‖𝒗‖

𝑠
)

𝑣

‖𝒗‖
 

Definition 2.6. Let ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) be an Einstein gyrovector space. Its gyrometric is given by the gyrodistance function 

𝑑⊕: ℝ𝑠
𝑛 × ℝ𝑠

𝑛 ⟶ ℝ≥0 ≔ {𝑟 ∈ ℝ: 𝑟 ≥ 0}, 

𝑑⊕(𝒂, 𝒃) = ‖⊖ 𝒂 ⊕ 𝒃‖ = ‖𝒃 ⊖ 𝒂‖ 

where 𝑑⊕(𝒂, 𝒃) is the gyrodistance of 𝒂 and 𝒃.  
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The unique Einstein gyroline 𝐿𝐴𝐵 that passes two given points 𝐴 and 𝐵 in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is 

represented by the equation 

𝐿𝐴𝐵 = 𝐴 ⊕ (⊖ 𝐴 ⊕ 𝐵)⨂𝑡 

𝑡 ∈ ℝ. Gyrolines in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) turn out to be well-known geodesic of the Beltrami Klein ball 

model of hyperbolic geometry.  

3. Some Gyrotrigonometric Identities 

 

 Let 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛 be three distinct points and ⊖ 𝑨 ⊕ 𝑩, ⊖ 𝑨 ⊕ 𝑪be two rooted gyrovectors with a common tail A. They 

include the gyroangle𝜶 = ∠𝑩𝑨𝑪 = ∠𝑪𝑨𝑩,  the radian measure of which is given by the equation 

𝒄𝒐𝒔𝜶 =
⊖𝑨⊕𝑩

‖⊖𝑨⊕𝑩‖
∙

⊖𝑨⊕𝑪

‖⊖𝑨⊕𝑪‖
.                                                                                  (3.1) 

Definition 3.1.  A gyrotriangle 𝑨𝑩𝑪 in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is a object formed by the three points 

𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛, called the vertices of the triangle, and the gyrovectors  ⊖ 𝑨 ⊕ 𝑩, ⊖ 𝑩 ⊕ 𝑪 and ⊖ 𝑪 ⊕ 𝑨, called the sides of the 

triangle. These are respectively, the sides opposite to the vertices C, Aand B. The gyrotriangle sides generate the three gyrotriangle 

gyroangles 𝜶, 𝜷 and𝜸 at the respective vertices A, B and C. 

 

Gyrotriangle gyroangle sum in hyperbolicgeometry is less than 𝜋. The difference, 𝛿,  

𝛿 = 𝜋 − (𝛼 + 𝛽 + 𝛾)                                                                                            (3.2) 

being the gyrotriangular defect. 

 

Theorem 3.2. Let 𝑨𝑩𝑪 be a gyrotriangle in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂), with vertices 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛, and sides 𝒄 =

⊖ 𝑨 ⊕ 𝑩, 𝒂 = ⊖ 𝑩 ⊕ 𝑪 and 𝒃 =⊖ 𝑪 ⊕ 𝑨, with gyroangles 𝜶, 𝜷 and 𝜸 at the vertices A, B and C. Then we have the law of cosines 

𝛾𝑐 = 𝛾𝑎𝛾𝑏(1 − 𝑏𝑠𝑐𝑠𝑐𝑜𝑠𝛾)                                                                                        (3.3) 

where 𝑎 = ‖𝒂‖, 𝑏 = ‖𝒃‖, 𝑐 = ‖𝒄‖and𝑏𝑠 = 𝑏/𝑠, etc. 

 

Definition 3.3. A right gyroangle 𝛾 is a gyroangle measuring  
𝜋

2
 radians. 

 

Theorem 3.4. A gyrotriangle 𝑨𝑩𝑪 in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) is a right gyrotriangle with gyrolegs  𝒂, 𝒃 and 

gyrohypotenuse 𝒄, if and only if  

𝛾𝑐 = 𝛾𝑎𝛾𝑏.                                                                                               (3.4) 

 

Theorem 3.5. Let 𝑨𝑩𝑪 be a right gyrotriangle in an Einstein gyrovector spaceℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) with the right gyroangle 𝛾 = 𝜋/2. 

Then we have two distinct Einsteinian-Phytagorean identities  

𝑎2 + (
𝛾𝑏

𝛾𝑐
)

2
𝑏2 = 𝑐2                                                                                      (3.5) 

(
𝛾𝑎

𝛾𝑐
)

2
𝑎2 + 𝑏2 = 𝑐2                                                                                      (3.6) 

with hypotenuse 𝑐 and legs 𝑎 and 𝑏. 

 

4. Main Result 

 

As an application of Einteinian-Pythagorian identities in Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂), we verify the following 

theorem: 

 

Theorem 4.1. Let 𝑨𝑩𝑪 be a gyrotriangle in an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂), with vertices 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛 ,and sides⊖

𝑨 ⊕ 𝑩, ⊖ 𝑩 ⊕ 𝑪and⊖ 𝑪 ⊕ 𝑨, and the points 𝑺, 𝑻and 𝑹 be located on the sides⊖ 𝑨 ⊕ 𝑩, ⊖ 𝑩 ⊕ 𝑪and ⊖ 𝑪 ⊕ 𝑨 of the 

gyrotriangle 𝑨𝑩𝑪 respectively.If the perpendiculars to the sides of the triangle at the points 𝑺, 𝑻 and 𝑹 corcurrent, then 

(𝛾𝑏𝛾𝑑)2[𝛾𝑎
2𝑎2 ⊖ 𝛾𝑓

2𝑓2] ⊕ (𝛾𝑎𝛾𝑑)2[𝛾𝑐
2𝑐2 ⊖ 𝛾𝑏

2𝑏2] ⊕ (𝛾𝑎𝛾𝑐)2[𝛾𝑒
2𝑒2 ⊖ 𝛾𝑑

2𝑑2] = 0 

where 𝑎 = ‖⊖ 𝑨 ⊕ 𝑺‖, 𝑏 = ‖⊖ 𝑺 ⊕ 𝑩‖, 𝑐 = ‖⊖ 𝑩 ⊕ 𝑻‖, 𝑑 = ‖⊖ 𝑻 ⊕ 𝑪‖, 𝑒 = ‖⊖ 𝑪 ⊕ 𝑹‖, 𝑓 = ‖⊖ 𝑹 ⊕ 𝑨‖. 

 

Proof : Let 𝑷 is a point of the gyrotriangle 𝑨𝑩𝑪 that three perpendiculars meet. Then the gyrosegments 

⊖ 𝑨 ⊕ 𝑷, ⊖ 𝑩 ⊕ 𝑷, ⊖ 𝑪 ⊕ 𝑷, ⊖ 𝑺 ⊕ 𝑷 , ⊖ 𝑻 ⊕ 𝑷,   ⊖ 𝑹 ⊕ 𝑷 

split  the gyrotriangle 𝑨𝑩𝑪 rinto six right gyrotriangles. Hence we can apply Theorem 3.5. to  these gyrotrianles one by one. For 

simplicity, let 
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𝑥 = ‖⊖ 𝑨 ⊕ 𝑷‖, 𝑦 = ‖⊖ 𝑩 ⊕ 𝑷‖,𝑧 = ‖⊖ 𝑪 ⊕ 𝑷‖. 

 for the right gyrotriangles 𝑨𝑷𝑺 and 𝑩𝑷𝑺, by the (3.5), we have  

𝑘2 ⊕ (
𝛾𝑎

𝛾𝑥
)

2
⨂𝑎2 = 𝑥2                                                             (4.1) 

and 

𝑘2 ⊕ (
𝛾𝑏

𝛾𝑦
)

2

⨂𝑏2 = 𝑦2                                                            (4.2) 

From (4.1) and (4.2), we obtain that  

(
𝛾𝑎

𝛾𝑥
)

2
⨂𝑎2 ⊖ (

𝛾𝑏

𝛾𝑦
)

2

⨂𝑏2 = 𝑥2 ⊖ 𝑦2                                                (4.3) 

Similary, for the right gyrotriangles 𝑩𝑷𝑻, 𝑪𝑷𝑻 and 𝑪𝑷𝑹, 𝑨𝑷𝑹 we obtain, 

(
𝛾𝑐

𝛾𝑦
)

2

⨂𝑐2 ⊖ (
𝛾𝑑

𝛾𝑧
)

2
⨂𝑑2 = 𝑦2 ⊖ 𝑧2                                                (4.4) 

and 

(
𝛾𝑒

𝛾𝑧
)

2
⨂𝑒2 ⊖ (

𝛾𝑓

𝛾𝑥
)

2
⨂𝑓2 = 𝑧2 ⊖ 𝑥2.                                               (4.5) 

Then we have from (4.3),(4.4), (4.5), by Definition 2.4.(3) 

(
𝛾𝑎

𝛾𝑥
)

2
⨂𝑎2 ⊕ (

𝛾𝑐

𝛾𝑦
)

2

⨂𝑐2 ⊕ (
𝛾𝑒

𝛾𝑧
)

2
⨂𝑒2 = (

𝛾𝑏

𝛾𝑦
)

2

⨂𝑏2 ⊕ (
𝛾𝑑

𝛾𝑧
)

2
⨂𝑑2 ⊕ (

𝛾𝑓

𝛾𝑥
)

2
⨂𝑓2,                  (4.6) 

and equivalently, 

[(𝛾𝑦𝛾𝑧)
2

𝛾𝑎
2] ⨂𝑎2 ⊕ [(𝛾𝑥𝛾𝑧)2𝛾𝑐

2]⨂𝑐2 ⊕ [(𝛾𝑥𝛾𝑦)
2

𝛾𝑒
2] ⨂𝑒2 = [(𝛾𝑥𝛾𝑧)2𝛾𝑏

2]⨂𝑏2 ⊕ [(𝛾𝑥𝛾𝑦)
2

𝛾𝑑
2] ⨂𝑑2 ⊕ [(𝛾𝑦𝛾𝑧)

2
𝛾𝑓

2] ⨂𝑓2  (4.7) 

On the other hand, from Theorem 3.4., for these six  right gyrotriangles we get  

𝛾𝑥 = 𝛾𝑎𝛾𝑘 = 𝛾𝑡𝛾𝑓 

𝛾𝑦 = 𝛾𝑘𝛾𝑏 = 𝛾𝑐𝛾𝑠 

𝛾𝑧 = 𝛾𝑠𝛾𝑑 = 𝛾𝑡𝛾𝑒 

These equations imply that  

(𝛾𝑎𝛾𝑏𝛾𝑑)2⨂𝑎2 ⊕ (𝛾𝑎𝛾𝑐𝛾𝑑)2⨂𝑐2 ⊕ (𝛾𝑎𝛾𝑐𝛾𝑒)2⨂𝑒2 = (𝛾𝑎𝛾𝑏𝛾𝑑)2⨂𝑏2 ⊕ (𝛾𝑎𝛾𝑐𝛾𝑑)2⨂𝑑2 ⊕ (𝛾𝑏𝛾𝑑𝛾𝑓)
2

⨂𝑓2 

Finally,  we obtain 

(𝛾𝑏𝛾𝑑)2[𝛾𝑎
2𝑎2 ⊖ 𝛾𝑓

2𝑓2] ⊕ (𝛾𝑎𝛾𝑑)2[𝛾𝑐
2𝑐2 ⊖ 𝛾𝑏

2𝑏2] ⊕ (𝛾𝑎𝛾𝑐)2[𝛾𝑒
2𝑒2 ⊖ 𝛾𝑑

2𝑑2] = 0 

 

 

5. Conclusion  

The Einstein relativistic velocity model is a model of hyperbolic geometry. Many of theorems of Euclidean geometry are relatively 

similarto the  Einstein relativistic velocity model,  which is a model of hyperbolicgeometry. In Euclidean geometry, Carnot’s theorem 

states that for a triangle 𝑨𝑩𝑪 and the points 𝑺, 𝑻,𝑹 where located on the sides 𝑩𝑪, 𝑨𝑪 and 𝑨𝑩 respectively, then the perpendiculars 

to the sides of the triangle at the points 𝑺, 𝑻and 𝑹 concurrent if and only if 

𝑎2 − 𝑏2 + 𝑐2 − 𝑑2 + 𝑒2 − 𝑓2 = 0.                                                                          (5.1) 
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where 𝑎 = |𝑨𝑺|, 𝑏 = |𝑺𝑩|, 𝑐 = |𝑩𝑻|, 𝑑 = |𝑻𝑪|, 𝑒 = |𝐶𝑅|, 𝑓 = |𝑹𝑨|. In an Einstein gyrovector space ℝ𝑠
𝑛 = (ℝ𝑠

𝑛, ⨁, ⨂) for a gyrotriangle, 

𝑨𝑩𝑪 with vertices 𝑨, 𝑩, 𝑪 ∈ ℝ𝑠
𝑛, and sides 𝒄 =⊖ 𝑨 ⊕ 𝑩, 𝒂 = ⊖ 𝑩 ⊕ 𝑪 and 𝒃 =⊖ 𝑪 ⊕ 𝑨. Carnot’stheorem (5.1) turns to  

(𝛾𝑏𝛾𝑑)2[𝛾𝑎
2𝑎2 ⊖ 𝛾𝑓

2𝑓2] ⊕ (𝛾𝑎𝛾𝑑)2[𝛾𝑐
2𝑐2 ⊖ 𝛾𝑏

2𝑏2] ⊕ (𝛾𝑎𝛾𝑐)2[𝛾𝑒
2𝑒2 ⊖ 𝛾𝑑

2𝑑2] = 0           (5.2) 

 
where 𝑎 = ‖⊖ 𝑨 ⊕ 𝑺‖, 𝑏 = ‖⊖ 𝑺 ⊕ 𝑩‖, 𝑐 = ‖⊖ 𝑩 ⊕ 𝑻‖, 𝑑 = ‖⊖ 𝑻 ⊕ 𝑪‖, 𝑒 = ‖⊖ 𝑪 ⊕ 𝑹‖, 𝑓 = ‖⊖ 𝑹 ⊕ 𝑨‖. In the Euclidean limit, of 

large s, 𝑠 → ∞, by Definition 2.2.,  gamma factor 𝛾𝒖 reduces to 1, and  gyro equalty in 5.2 reduces to the 

 

𝑎2 − 𝑏2 + 𝑐2 − 𝑑2 + 𝑒2 − 𝑓2 = 0. 
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